Abstract:
Disclosed are power systems for use on various types of power machines, including an engine and a hydraulic pump assembly positioned in-line with and powered by an engine output shaft. A driving member powered by the engine has a central cavity through which access to the engine output shaft is provided to the hydraulic pump. A driven member is in communication with the driving member to receive power. The driven member is coupleable to a gearbox drive shaft that drives a gearbox, the gearbox having an output capable of driving a power take-off shaft.
Abstract:
A mechanical linkage between operator input devices and actuators including a junction having a first portion operably coupled to an operator input device and a second portion operably coupled to an actuator. The first and second portions of the junction are connected when a cab is in an operating position and disconnected when a cab is in a service position. When connected, the first and second portions create a solid connection between the operator input device and the actuator. When the first and second portions are disconnected, the operator input will be not be operably coupled to the actuator. Movement of the cab to the operating position will cause the first and second portions to become connected and movement away from the operating position will cause the first and second portions to become disconnected.
Abstract:
Disclosed are horsepower management systems and methods for use on power machines with an engine that powers a drive system. An engine speed control device controls the engine speed. A variable displacement drive pump controlled by a displacement control member provides pressurized fluid to a drive motor. A control system communicates with the engine speed control device and the pump displacement control member. The control system includes a user input device and a command lever rotatably coupled to the displacement control member and capable of receiving the user input. The command lever provides a signal to the engine speed control device in response to the user input. The command lever also commands a given displacement via the displacement control member subject to load forces on the hydrostatic pump transmitted to a limiting mechanism coupled to the command lever and the displacement control member.
Abstract:
Disclosed are power machines, and drive systems for use thereon, as well as methods of controlling the displacement of a hydraulic drive motor. The drive system includes a drive pump capable of providing a hydraulic power output and a drive motor operably coupled to the drive pump that receives the hydraulic power output from the drive pump. The drive motor has an operating displacement that is variable between a minimum displacement and a maximum displacement and it provides a rotational output member. A shift actuator is operably coupled to the drive motor and it is configured to vary the displacement of the drive motor between the minimum displacement and the maximum displacement. A controller controls the shift actuator to cause the drive motor to provide infinitely variable displacement between the minimum and maximum displacements.
Abstract:
Disclosed are power machines, and drive systems for use thereon, as well as methods of controlling the displacement of a hydraulic drive motor. The drive system includes a drive pump capable of providing a hydraulic power output and a drive motor operably coupled to the drive pump that receives the hydraulic power output from the drive pump. The drive motor has an operating displacement that is variable between a minimum displacement and a maximum displacement and it provides a rotational output member. A shift actuator is operably coupled to the drive motor and it is configured to vary the displacement of the drive motor between the minimum displacement and the maximum displacement. A controller controls the shift actuator to cause the drive motor to provide infinitely variable displacement between the minimum and maximum displacements.
Abstract:
Disclosed are horsepower management systems and methods for use on power machines with an engine that powers a drive system. An engine speed control device controls the engine speed. A variable displacement drive pump controlled by a displacement control member provides pressurized fluid to a drive motor. A control system communicates with the engine speed control device and the pump displacement control member. The control system includes a user input device and a command lever rotatably coupled to the displacement control member and capable of receiving the user input. The command lever provides a signal to the engine speed control device in response to the user input. The command lever also commands a given displacement via the displacement control member subject to load forces on the hydrostatic pump transmitted to a limiting mechanism coupled to the command lever and the displacement control member.
Abstract:
Disclosed are power systems for use on various types of power machines, including an engine and a hydraulic pump assembly positioned in-line with and powered by an engine output shaft. A driving member powered by the engine has a central cavity through which access to the engine output shaft is provided to the hydraulic pump. A driven member is in communication with the driving member to receive power. The driven member is coupleable to a gearbox drive shaft that drives a gearbox, the gearbox having an output capable of driving a power take-off shaft.
Abstract:
A mechanical linkage between operator input devices and actuators including a junction having a first portion operably coupled to an operator input device and a second portion operably coupled to an actuator. The first and second portions of the junction are connected when a cab is in an operating position and disconnected when a cab is in a service position. When connected, the first and second portions create a solid connection between the operator input device and the actuator. When the first and second portions are disconnected, the operator input will be not be operably coupled to the actuator. Movement of the cab to the operating position will cause the first and second portions to become connected and movement away from the operating position will cause the first and second portions to become disconnected.
Abstract:
Disclosed embodiments include power machines, track frame assemblies, and apparatus for mounting a track frame assembly to a frame of a power machine. In various disclosed embodiments, mounting structures mount a track frame to the machine frame. In some exemplary embodiments, each mounting structure includes two torsional joints and at least three non-torsional joints between the machine frame and the corresponding track frame. The two torsional joints can be provided by torsion shafts and the corresponding attachments to front and rear arms. In exemplary embodiments, the at least three non-torsional joints are substantially free to rotate and can include a joint between a front axle and the track frame, a joint between a rear axle and a link, and a joint between a link pin and the track frame. In some exemplary embodiments, the front or rear arms are oriented relative to corresponding torsion shafts to improve performance.