Abstract:
The present invention relates to a driveline arrangement comprising a first driveline comprising a first electric machine and a first transmission arrangement, the first driveline being configured to propel a first pair of wheels at a speed range between zero speed and a maximum speed limit of the working machine, a second driveline comprising a second electric machine and a second transmission arrangement, the second driveline being configured to propel a second pair of wheels at a speed range between zero speed and a predetermined threshold speed limit of the working machine, wherein the predetermined threshold speed limit is lower than the maximum speed limit, and a control unit connected to the first and second drivelines, the control unit comprising control circuitry configured to control the second driveline to assume a disengaged state in which the second driveline is disconnected from propelling the second pair of wheels when a speed of the working machine exceeds the predetermined threshold speed limit.
Abstract:
A drive device for a hybrid-drive motor vehicle, having an internal combustion engine as a primary drive, an electric engine as a secondary drive, and having planetary gear units that are coupled with one another that can be shifted into different gear steps through shift elements and brakes. The planetary gear units being connectable to a common output shaft by way of input elements and output elements. The reaction elements thereof can be coupled or firmly braked, wherein the drive device can be operated in an electromotor drive, a primary drive having gear steps (gears), or in a hybrid drive.
Abstract:
Disclosed is a torque indicating device including: a first indicating section that indicates a torque transmitted to primary drive wheels of a vehicle; and a second indicating section that indicates a torque transmitted to secondary drive wheels of the vehicle. The second indicating section indicates a quantity that is less than or equal to the quantity indicated by the first indicating section.
Abstract:
A powertrain with a disconnecting rear drive axle generally includes a prime mover including an output that rotates about a rotational axis. A transmission includes an output that rotates about a rotational axis. The rotational axes of the outputs are substantially parallel to a longitudinal axis of the powertrain. A front driveline is operable to direct rotary power from the prime mover to front vehicle wheels. A rear driveline includes a propeller shaft that provides rotary power to a first shaft member and a second shaft member through a pinion and a ring gear. The first shaft member and the second shaft are operable to connect to rear vehicle wheels. A power switching mechanism has an engaged condition and a disengaged condition. The power switching mechanism is operable to direct the rotary power from the transmission to the rear driveline in the engaged condition. A torque transfer device has an engaged condition and a disengaged condition. The power switching mechanism and the torque transfer device in the disengaged condition are operable to only transmit rotary power to the first vehicle wheels. The torque transfer device in the disengaged condition prevents the first shaft member and the second shaft member from back-driving the ring gear and the pinion of the rear driveline. The power switching mechanism in the disengaged condition prevents the transmission from driving the propeller shaft.
Abstract:
An automatic powershift vehicle transmission comprising an input shaft; an output shaft; first and second intermediate shafts parallel to the input shaft; a lay shaft parallel to the output shaft; gearing providing first, second, third and fourth forward driving paths from the input shaft to the output shaft; a first clutch and a second clutch between the ends of the input shaft to establish driving connections; a third clutch for establishing the first or third forward driving path when the first clutch is operative; and a fourth clutch for establishing the second or fourth forward driving path when the second clutch is operative.
Abstract:
A dual clutch transmission comprises a first clutch to be engaged for setting any one of forward-traveling odd-numbered speeds and a second clutch to be engaged for setting any one of forward-traveling even-numbered speeds. The dual clutch transmission establishes a desired forward-traveling speed by alternately engaging/disengaging the first and second clutches. A backward-traveling drive train is adapted to be driven by engaging one of the first and second clutches. When a reverse mode is established by a mode setting means, the one of the first and second clutches is engaged to drive the backward-traveling drive train by setting a speed change manipulator at a backward-traveling position, and the other of the first and second clutches is engaged to drive a fixed one forward-traveling speed drive train by setting the speed change manipulator at a forward-traveling position. While the reverse mode is established, the backward-traveling drive train and the fixed one forward-traveling speed drive train are kept activated regardless of whether the first or second clutch is engaged.
Abstract:
An all-wheel drivetrain for a motor vehicle, which has at least two driven axles, comprising a characteristic torque converter transmission of longitudinal construction. To the input side of the transmission drive power is fed and the transmission serves for converting a characteristic of a drive engine. The output side of the transmission is connected to a transfer device, by means of which the drive power can be distributed to the two axles. The transmission has an output shaft which is connected to a first drive shaft for the first axle, and a countershaft parallel thereto. The output shaft and the countershaft are connected to one another by means of a first constant transmission ratio. The countershaft is connected by means of a second constant transmission ratio to a second drive shaft for the second axle. The transfer device is arranged coaxially with the second drive shaft.
Abstract:
A transaxle transfers torque to first and second axle shafts. The transaxle includes a main shaft, a planetary gearset, a first clutch transferring torque between the main shaft and a first member of the planetary gearset and a second clutch transferring torque between the main shaft and a second member of the planetary gearset. An input shaft is fixed for rotation with the first member of the planetary gearset. A countershaft is selectively driven by first, second, third and fourth speed gearsets associated with the input shaft. A final drive unit provides multiplied torque to a differential assembly adapted to drive the first and second axle shafts. Actuation of the first and second clutches selectively provides first through eighth discrete forward drive ratios such that each of the first, second, third and fourth speed gearsets transfers torque during provision of two of the first through eighth forward drive ratios.
Abstract:
A double clutch transmission with a double clutch, the input side of which can be driven and the output sides each communicate with one of two transmission input shafts that are arranged coaxially relative to one another, with an intermediate shaft and with fixed or idler gears that are mounted or rotatably supported on the shafts, and with shifting units that are allocated to the idler gears, with which the idler gears can be non-rotatably connected to the properly allocated shaft for the purpose of realizing gear ratio. To allow a more cost-effective production of this type of transmission, the fixed gears for the reverse gear and first gear are arranged axially directly in front each other on the same transmission input shaft, or that the fixed gears for the reverse gear and for the first gear are designed as a single common fixed gear.
Abstract:
In a transmission in which transmission mechanisms (1st speed, 2nd speed, 3rd speed and reverse transmission mechanisms 11, 12, 13, 14) are disposed between transmission input and output shafts 1, 2 which are parallel with each other, a structure in which a driving force is distributed from the output shaft 2 for transmission to front and rear wheels of a vehicle comprising an intermediate rear wheel driving gear 32 rotatably disposed on the input shaft 1, a front wheel side driving gear 3a fixed to the output shaft for transmitting the driving force to the front wheels, a first rear wheel driving gear 31 fixed to the output shaft so as to mesh with the intermediate gear and a second rear wheel driving gear 33 rotatably disposed on a rear wheel driving rotating shaft 35 which is parallel with the input shaft and adapted to mesh with the intermediate rear wheel driving gear so as to transmit the driving force to the rear wheels.