摘要:
The present invention relates to a method for forming a crystallized silicon layer made up of grains having an average size of no less than 20 μm, including at least the steps that comprise: (1) providing a layer of silicon to be (re)crystallized, the average grain size of which is less than 10 μm; (2) placing said layer of silicon to be (re)crystallized in contact with a liquid composition at least partially made up of a metal solvent; and (3) exposing the assembly to a thermal treatment suitable for (re)crystallizing said layer of silicon with the expected grain size, characterized in that said thermal treatment includes heating the assembly made up of the layer of silicon in contact with said liquid composition to a temperature that is lower than 1410° C. and at least equal to the eutectic temperature in the solvent-silicon phase diagram.
摘要:
The present invention concerns a crucible for solidifying a silicon ingot from molten silicon, characterised in that it is coated at least partially on the inner surface thereof with an outer layer provided in the form of a stack of laminations, each lamination having a thickness varying from 5 to 150 μm, and being formed from a material obtained by thermal decomposition of polysilazane(s) and/or polysiloxane(s) and wherein inorganic particles are embedded having a size varying from 50 μm to 200 μm. The present invention further concerns a method for preparing such crucibles.
摘要:
The present invention concerns a crucible for solidifying a silicon ingot from molten silicon, characterized in that it is coated at least partially on the inner surface thereof with an outer layer provided in the form of a stack of laminations, each lamination having a thickness varying from 5 to 150 μm, and being formed from a material obtained by thermal decomposition of polysilazane(s) and/or polysiloxane(s) and wherein inorganic particles are embedded having a size varying from 50 μm to 200 μm. The present invention further concerns a method for preparing such crucibles.
摘要:
The present invention relates to a method for forming a crystallised silicon layer made up of grains having an average size of no less than 20 μm, including at least the steps that comprise: (1) providing a layer of silicon to be (re)crystallised, the average grain size of which is less than 10 μm; (2) placing said layer of silicon to be (re)crystallised in contact with a liquid composition at least partially made up of a metal solvent; and (3) exposing the assembly to a thermal treatment suitable for (re)crystallising said layer of silicon with the expected grain size, characterised in that said thermal treatment includes heating the assembly made up of the layer of silicon in contact with said liquid composition to a temperature that is lower than 1410° C. and at least equal to the eutectic temperature in the solvent-silicon phase diagram.
摘要:
The present invention concerns a method of forming, by liquid phase epitaxial growth, on the surface of a plurality of substrates, a layer of crystallised silicon having a grain size greater than or equal to 200 μm, comprising at least the steps consisting of: (i) arranging a liquid bath formed from a liquid metal solvent phase in which liquid silicon is homogeneously dispersed; (ii) immersing, in the bath of step (i), said substrates (1), in such a way that each of the surfaces of the substrates (1) that need to be coated is in contact with the liquid bath, said surfaces being arranged parallel to one another, and perpendicularly to the interface (3) of the liquid bath (2) and the gas atmosphere (4) contiguous to said liquid bath or according to an inclination angle of at least 45° in relation to said interface (3); (iii) imposing, on the whole of step (ii), conditions conducive to the vaporisation of said liquid solvent phase and to the establishing of a natural convection movement of the liquid bath in the vicinity of the surfaces to be coated of the substrates, which are held in fixed position; and (iv) recovering the substrates coated with the crystallised silicon layer formed at the end of step (iii).