Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
Abstract:
Methods of manufacturing a ceramic honeycomb body having a honeycomb structure with a matrix of intersecting walls, and a skin disposed on an outer peripheral portion of the matrix where the skin has a first average porosity and the interior portion of the matrix has a second average porosity that is greater than the first average porosity. The methods include coating at least the skin with a fluid formulation containing a sintering aid and subsequently firing the honeycomb structure. In certain embodiments, a glass layer is formed in the skin or in regions of the walls directly adjacent to the skin. In certain embodiments, the coating is applied to a green honeycomb structure, and in other embodiments the coating is applied to a ceramic honeycomb structure. Other honeycomb bodies and methods are described.
Abstract:
Batch compositions containing pre-reacted inorganic spheroidal particles, small amount of fine inorganic particles (“fines”), and an extremely large amount of liquid vehicle. The batch compositions contain pre-reacted inorganic particles having a particle size distribution with 20 μm≤D50≤100 μm, D90≤100 μm, and D5≥10 μm; less than 20 wt % of fine inorganic particles (fines) whose particle distribution(s) have a median diameter of less than 5 μm; and a liquid vehicle in a weight percent (LV %≥28%) by super-addition to all inorganic particles in the batch composition. Fast extruding batch compositions having extremely high Tau Y/Beta ratios are provided. Green bodies, such as green honeycomb bodies and methods of manufacturing green honeycomb bodies are provided, as are other aspects.
Abstract:
Batch compositions containing pre-reacted inorganic spheroidal particles, small amount of fine inorganic particles (“fines”), and an extremely large amount of liquid vehicle. The batch compositions contain pre-reacted inorganic particles having a particle size distribution with 20 μm≤D50≤100 μm, D90≤100 μm, and D5≥10 μm; less than 20 wt % of fine inorganic particles (fines) whose particle distribution(s) have a median diameter of less than 5 μm; and a liquid vehicle in a weight percent (LV %≥28%) by super-addition to all inorganic particles in the batch composition. Fast extruding batch compositions having extremely high Tau Y/Beta ratios are provided. Green bodies, such as green honeycomb bodies and methods of manufacturing green honeycomb bodies are provided, as are other aspects.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
Abstract:
Methods of manufacturing a ceramic honeycomb body having a honeycomb structure with a matrix of intersecting walls, and a skin disposed on an outer peripheral portion of the matrix where the skin has a first average porosity and the interior portion of the matrix has a second average porosity greater than the first average porosity. The methods include coating at least the skin with a fluid formulation containing a sintering aid and subsequently firing the honeycomb structure. In certain embodiments, a glass layer is formed in the skin or in regions of the walls directly adjacent to the skin. In certain embodiments, the coating is applied to a green honeycomb body, and in other embodiments the coating is applied to a ceramic honeycomb body. Other honeycomb bodies and methods are described.
Abstract:
Methods of manufacturing a ceramic honeycomb body having a honeycomb structure with a matrix of intersecting walls, and a skin disposed on an outer peripheral portion of the matrix where the skin has a first average porosity and the interior portion of the matrix has a second average porosity that is greater than the first average porosity. The methods include coating at least the skin with a fluid formulation containing a sintering aid and subsequently firing the honeycomb structure. In certain embodiments, a glass layer is formed in the skin or in regions of the walls directly adjacent to the skin. In certain embodiments, the coating is applied to a green honeycomb structure, and in other embodiments the coating is applied to a ceramic honeycomb structure. Other honeycomb bodies and methods are described.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.
Abstract:
Disclosed are ceramic bodies comprised of composite cordierite aluminum magnesium titanate ceramic compositions and methods for the manufacture of same.