Abstract:
Methods and apparatus provide for sourcing a glass web, the glass web having a length and a width transverse to the length; moving the glass web from the source to a destination in a transport direction along the length of the glass web; cutting the glass web, at a cutting zone, along the length of the glass web into at least first and second glass ribbons as the glass web is moved in the transport direction from the source to the destination, such that respective first and second edge surfaces are produced on the first and second glass ribbons; and optically inspecting at least one of the first and second edge surfaces in real-time as the first and second glass ribbons of the glass web are moved in the transport direction to the destination.
Abstract:
A glass molding system and a method of making glass articles using the glass molding system are disclosed. The glass molding system includes an indexing table, a plurality of enclosures arranged along the indexing table, and a plurality of stations defined on the indexing table such that each of the stations is selectively indexable with any one of the enclosures. At least one radiant heater is arranged in at least one of the enclosures. A radiation reflector surface and a radiation emitter body are arranged in the at least one of the enclosures. The radiation emitter body is between the at least one radiant heater and the radiation reflector surface and has a first surface in opposing relation to the at least one radiant heater and a second surface in opposing relation to the radiation reflector surface.
Abstract:
In one embodiment a method of steering a glass web includes directing the glass web in a conveyance direction on a web conveyance pathway, contacting at least one surface of the glass web with at least one wheel of at least one idler roller, the at least one wheel of the at least one idler roller having an axis of rotation parallel to a surface of the glass web, detecting an angle between a centerline of the glass web and the conveyance direction with an angle measurement device, and modifying an orientation of the at least one idler roller and the at least one wheel about an axis of rotation substantially orthogonal to the web conveyance pathway to shift the glass web based on a detected angle between the centerline of the glass web and the conveyance direction of the web conveyance pathway.
Abstract:
In one embodiment, an angle measurement device for measuring an angle between a web of material and a conveyance direction includes a mounting bracket, a shaft rotatably coupled to the mounting bracket such that the shaft is rotatable with respect to the mounting bracket, a caster portion coupled to a first end of the shaft and positioned to contact a surface of the web of material being drawn over a web conveyance pathway, where the caster portion is spaced apart from an axis of rotation of the shaft, and an angular displacement sensor coupled to the mounting bracket and positioned to detect an angular orientation of the shaft with respect to the mounting bracket, where the angular displacement sensor outputs a signal indicative of the angular orientation of the shaft with respect to the mounting bracket.
Abstract:
Apparatus and methods of separating a glass ribbon are provided. In one embodiment, an apparatus for severing glass ribbon includes a plurality of manufacturing components arranged into a travel path, a glass cutting device, and a severing zone positioned in a downstream direction from the glass cutting device, where the severing zone comprising a targeted separation region along the travel path. The apparatus also includes an acoustic transmitter positioned in a first direction from the targeted separation region, an acoustic receiver positioned in a second direction from the targeted separation region opposite the first direction, and a manufacturing component positioned along the travel path in the downstream direction from the targeted separation region.
Abstract:
A particle detection system includes a light source configured to emit a light beam into a cylindrical glass article when the cylindrical glass article is imaged by the glass particle detection system. The light beam is directed along a beam propagation axis that is perpendicular to a longitudinal axis of the cylindrical glass article. The particle detection system further includes a first polarizer positioned between the light source and the cylindrical glass, a camera configured to capture an image of the light beam reflected from the cylindrical glass article, and an analyzer positioned between the cylindrical glass article and the camera. An optical axis of the camera is perpendicular to the beam propagation axis of the light source.