Finite impulse response analog receive filter with amplifier-based delay chain

    公开(公告)号:US10313165B2

    公开(公告)日:2019-06-04

    申请号:US15453774

    申请日:2017-03-08

    摘要: High-data rate channel interface modules and equalization methods employing a finite impulse response (FIR) analog receive filter. Embodiments include an illustrative channel interface module having multiple amplifier-based delay units arranged in a sequential chain to convert an analog input signal into a set of increasingly-delayed analog signals that are weighted and combined together with the analog input signal to form an equalized signal; and a symbol decision element operating on the equalized signal to obtain a sequence of symbol decisions. An interface that extracts received data from the sequence of symbol decisions. The delay units may employ one or more delay cells each having a common-source amplifier stage followed by a source follower output stage, the two stages providing approximately equal portions of the propagation delay. An enhanced gate-to-drain capacitance in the common-source amplifier may increase propagation delay while reducing bandwidth limitations.

    IC layout tiles with internal channel for signal distribution

    公开(公告)号:US10855278B1

    公开(公告)日:2020-12-01

    申请号:US16544810

    申请日:2019-08-19

    IPC分类号: G06F1/10 H03K19/0175

    摘要: Modular layout design units are provided with an internal channel for multi-directional distribution of a shared signal. In one illustrative embodiment, an integrated circuit includes: one or more modular units, each modular unit having an internal channel for signal distribution. The internal channel possesses: an edge connection on each edge of the modular unit; a hub node coupled to each edge connection by a respective bi-directional buffer having an incoming buffer and an outgoing buffer with at least one of the incoming and outgoing buffers disabled, the bi-directional buffers cooperating to steer a signal from a selectable one of the edge connections to one or more of the other edge connections; and a tap providing the signal for use by internal circuitry of the modular unit.

    Low power SerDes architecture and protocol

    公开(公告)号:US10069660B1

    公开(公告)日:2018-09-04

    申请号:US15487045

    申请日:2017-04-13

    摘要: An illustrative multi-lane communication method includes: (a) receiving receive signals on different receive channels; (b) converting each of the receive signals into a lane of a multi-lane receive data stream, wherein said converting includes demodulation and error measurement; (c) determining remote pre-equalizer adaptation information based in part on the error measurement; (d) detecting alignment markers in the multi-lane receive data stream; (e) extracting local pre-equalizer adaptation information in, or proximate to, the alignment markers in the multi-lane receive data stream; (f) using the local pre-equalizer adaptation information to adjust coefficients of a local pre-equalization filter; (g) periodically inserting an alignment marker in a multi-lane transmit data stream, wherein the remote pre-equalizer adaption information is included in, or inserted proximate to, the alignment markers; and (h) transforming each lane of the multi-lane transmit data stream into a transmit signal, wherein said transforming includes modulating and applying the local pre-equalization filter.

    Single-ended signaling between differential ethernet interfaces

    公开(公告)号:US10944584B1

    公开(公告)日:2021-03-09

    申请号:US16678790

    申请日:2019-11-08

    摘要: Mass-manufactured cables suitable for large communication centers may convert from differential PAM4 interface signaling to parallel single-ended NRZ transit signaling at 53.125 GBd to provide bidirectional data rates up to 800 Gbps and beyond. One illustrative cable embodiment includes: electrical conductors connected between a first connector and a second connector, each adapted to fit into an Ethernet port of a corresponding host device to receive an electrical input signal to the cable conveying an outbound data stream from the host device and to provide an electrical output signal from the cable conveying an inbound data stream to that host device. The electrical input and output signals employ differential PAM4 modulation to convey the inbound and outbound data streams. Each of the first and second connectors includes transceivers to perform clock and data recovery on the electrical input signal to extract and re-modulate the outbound data stream for transit via the electrical conductors as respective pairs of electrical transit signals employing single-ended NRZ modulation.