Abstract:
An LED light fixture having a light-emitting region and a perimetrical structure therearound. The light-emitting region includes at least one LED-array module supported by an LED heat sink open for air/water-flow. The perimetrical structure has first and second opposite substantially-aligned edge-adjacent portions each extending along the light-emitting region and meeting each other at a perimetrical edge. The first and second edge-adjacent portions converge toward each other at positions progressively closer to the perimetrical edge to form aerodynamic-drag-reducing cross-sectional profiles transverse to the fixture plane and extending in substantially all fixture-plane directions from the intersection of its two major principal axes.
Abstract:
An LED light fixture a housing, a heat sink secured with respect to the housing, the heat sink has a base with front and back surfaces, and an LED arrangement mounted at the front surface of the heat sink The back surface of the heat sink is open to water/air flow thereover. The LED light fixture also includes at least one closed channel extending along the base and spaced therefrom for receiving wire connections for the LED arrangement. The at least one closed channel receives wiring extending to/from the second LED module. The LED arrangement may include at least first and second LED modules, the first LED module being proximal to the housing with the at least one closed channel receiving wiring extending to/from the second LED module. The first and second LED modules may be in end-to-end relationship to one another such that the second LED module is distal from the housing.
Abstract:
An LED lighting fixture including a housing and an LED assembly secured with respect to the housing to permit air/water-flow over the LED assembly. The LED assembly includes a plurality of LED-array modules on an equal plurality of individual heat sinks. The housing defines an air gap permitting air/water-flow to and from the heat sinks.
Abstract:
An LED light fixture having a light-emitting region and a perimetrical structure therearound. The light-emitting region includes at least one LED-array module supported by an LED heat sink open for air/water-flow. The perimetrical structure has first and second opposite substantially-aligned edge-adjacent portions each extending along the light-emitting region and meeting each other at a perimetrical edge. The first and second edge-adjacent portions converge toward each other at positions progressively closer to the perimetrical edge to form aerodynamic-drag-reducing cross-sectional profiles transverse to the fixture plane and extending in substantially all fixture-plane directions from the intersection of its two major principal axes.
Abstract:
An LED floodlight fixture LED light fixture including a plurality of heat-sink-mounted LED-array modules, each module engaging an LED-adjacent surface of a heat-sink base for transfer of heat from the module, and at least one venting aperture through the heat-sink base to provide air ingress to the heat-dissipating surfaces adjacent to the aperture. The LED light fixture may include a plurality of heat sinks, each heat sink with its own heat-dissipating surfaces and heat-sink base which has one of the LED-array modules engaged thereon. The heat-sink base is wider than the module thereon such that the heat-sink base includes a beyond-module portion. The venting aperture(s) is/are through the beyond-module portion of the heat-sink base. The inventive light fixture may include a housing and an LED assembly which includes the heat-sink-mounted LED-array modules. The LED assembly and the housing form a venting gap therebetween to provide air ingress along the heat-sink base to the heat-dissipating surfaces.
Abstract:
An LED light fixture includes a housing forming a chamber enclosing at least one drive and an extruded portion extending therefrom. In some embodiments, the housing has a dimension in the extruded direction no less than one-third of the fixture length, and the sides of the extruded portion and of the housing have substantially congruent profiles such that enclosure and heat-dissipation functions of the fixture are facilitated without substantial discontinuity in fixture configuration therealong viewed from positions below. A plurality of substantially rectangular LED-array modules are mounted to the LED-adjacent surface which has length and width dimensions accommodating multiple modules of predetermined width and lengths.
Abstract:
An LED floodlight fixture LED light fixture including a plurality of heat-sink-mounted LED-array modules, each module engaging an LED-adjacent surface of a heat-sink base for transfer of heat from the module, and at least one venting aperture through the heat-sink base to provide air ingress to the heat-dissipating surfaces adjacent to the aperture. The LED light fixture may include a plurality of heat sinks, each heat sink with its own heat-dissipating surfaces and heat-sink base which has one of the LED-array modules engaged thereon. The heat-sink base is wider than the module thereon such that the heat-sink base includes a beyond-module portion. The venting aperture(s) is/are through the beyond-module portion of the heat-sink base. The inventive light fixture may include a housing and an LED assembly which includes the heat-sink-mounted LED-array modules. The LED assembly and the housing form a venting gap therebetween to provide air ingress along the heat-sink base to the heat-dissipating surfaces.
Abstract:
A light fixture comprising a chamber, at least one power-circuitry driver within the chamber, at least one LED module outside the chamber, and at least one air gap between the chamber and the at least one LED module, the air gap permitting air/water-flow therethrough. The chamber is defined by a housing. The at least one LED module is on an LED heat sink outside the chamber. The housing defines the air gap permitting air/water-flow to and from the heat sink.
Abstract:
A light fixture comprising a chamber, at least one power-circuitry driver within the chamber, at least one LED module outside the chamber, and at least one air gap between the chamber and the at least one LED module, the air gap permitting air/water-flow therethrough. The chamber is defined by a housing. The at least one LED module is on an LED heat sink outside the chamber. The housing defines the air gap permitting air/water-flow to and from the heat sink.