摘要:
A laser system which utilizes a reflective objective lens includes a closed loop servo and beam profiling system to provide improved uniformity of the laser beam impinging on the work piece. The laser beam is passed through an aperture to pattern the work piece. A beamsplitter separates the laser beam into workpiece and diagnostic beams. The workpiece and diagnostic beams are both passed through identical reflective objective lenses, to accurately measures performance of the work piece beam. Preferably, a third reflective objective lens collimates the diagnostic beam and directs it to a beam analyzer where the uniformity can be accurately assessed. The information determined by the beam analyzer is then used to position a pre-aperture converging optic (PACO) located between the laser source and the aperture. Adjustments in the x- and y-dimensions of the PACO lens change the angular uniformity at the aperture. Adjustments in the z-dimension of the PACO lens adjust the energy density delivered to the work piece. Homogenizing the laser light provides increased spatial uniformity. In one technique, a fiber optic bundle randomly redistributes the gaussian input energy to achieve spatial uniformity. Preferably, the output end of the fiber optic bundle is annular in shape, while the input end is rectangular to effectively capture light output from a laser, and prevents or reduces energy losses. In another technique, a fine mesh screen or combination of screens is inserted into the path of the laser beam prior to the aperture. The screen or combination of screens is positioned with respected to the converging lens and aperture or mask such that both spatial and angular uniformity result at the mask or aperture planed, and, hence, the work plane.
摘要:
A desired design for electronic structures is converted into a graphic design format and sorted into a pseudo-raster format corresponding to scan lines. A laser or other machining beam is controlled by a separate tracking beam utilizing a mid-objective scanning system. The firing frequency of the machining beam is determined by the position of the tracking beam on a detector, as compared to the scan line data. Accuracy is verified by detection of plume or spectra generated during machining. Alignment of the machining and tracking beams is by interferometric methods. The system improves optical performance parameters of telecentricity, angle of scanned beam line, location of line in which the scanned line resides, astigmatism and field curvature.
摘要:
A desired design for electronic structures is converted into a graphic design format and sorted into a pseudo-raster format corresponding to scan lines. A laser or other machining beam is controlled by a separate tracking beam utilizing a mid-objective scanning system. The firing frequency of the machining beam is determined by the position of the tracking beam on a detector, as compared to the scan line data. Accuracy is verified by detection of plume or spectra generated during machining. Alignment of the machining and tracking beams is by interferometric methods. The system improves optical performance parameters of telecentricity, angle of scanned beam line, location of line in which the scanned line resides, astigmatism and field curvature.
摘要:
A desired design for electronic structures is converted into a graphic design format and sorted into a pseudo-raster format corresponding to scan lines. A laser or other machining beam is controlled by a separate tracking beam utilizing a mid-objective scanning system. The firing frequency of the machining beam is determined by the position of the tracking beam on a detector, as compared to the scan line data. Accuracy is verified by detection of plume or spectra generated during machining. Alignment of the machining and tracking beams is by interferometric methods. The system improves optical performance parameters of telecentricity, angle of scanned beam line, location of line in which the scanned line resides, astigmatism and field curvature.
摘要:
An apparatus and method are disclosed for laser raster scanning a substrate in an XY plane wherein a single motor is used to provide synchronized X-Y scanning by two mirrors positioned orthogonally and which move linearly in an XY plane relative to each other by the rotation of the motor shaft. A preferred embodiment uses a specially designed cam to provide back and forth laser scanning motion and an intermittent gear to provide indexing of the laser. The apparatus and method may be configured for various scan speeds, spot sizes, Y-axis indexing and X-axis scan at the object plane. Over scanning of the active XY area of the object plane is preferred to provide constant velocity and energy density over the active XY area.
摘要:
A desired design for electronic structures is converted into a graphic design format and sorted into a pseudo-raster format corresponding to scan lines. A laser or other machining beam is controlled by a separate tracking beam utilizing a mid-objective scanning system. The firing frequency of the machining beam is determined by the position of the tracking beam on a detector, as compared to the scan line data. Accuracy is verified by detection of plume or spectra generated during machining. Alignment of the machining and tracking beams is by interferometric methods. The system improves optical performance parameters of telecentricity, angle of scanned beam line, location of line in which the scanned line resides, astigmatism and field curvature.
摘要:
A desired design for electronic structures is converted into a graphic design format and sorted into a pseudo-raster format corresponding to scan lines. A laser or other machining beam is controlled by a separate tracking beam utilizing a mid-objective scanning system. The firing frequency of the machining beam is determined by the position of the tracking beam on a detector, as compared to the scan line data. Accuracy is verified by detection of plume or spectra generated during machining. Evaluation and alignment of the machining and tracking beams is by interferometric methods. The system improves optical performance parameters of telecentricity, angle of scanned beam line, location of line in which the scanned line resides, astigmatism and field curvature.
摘要:
A combination of a FOUP (front opening unified pod) system and a reticle system utilized for the transport of wafers and a reticle system, the latter of which are used for transporting reticles from a first fabrication site to a further site at another location, and which provides for a unified system enabling the automated and trackable delivery of the reticles between these sites. Provided is a modified FOUP base structure, which is adapted to retain a reticle and to be able to employ existing equipment in a fabrication site which only necessitates a minimal modification of the equipment in order to render the latter universally adaptable to the combination of the systems.
摘要:
A overhead transport service vehicle system includes a carriage frame structured and arranged to carry a user. A hoisting mechanism utilizes at least one lifting device for lifting and lowering the carriage frame and at least one moving device for causing movement of the hoisting mechanism along one of a track or rail. A control controls at least one of the at least one lifting device and the at least one moving device.
摘要:
A cable attachment assembly, a hoist and a transportation system using the cable attachment assembly. The cable attachment assembly including: a plate pivotable about a first axis; first and second pivot assemblies pivotable about respective second and third axes, the first, second and third axes parallel to each other; a first cable retainer in the first pivot assembly, the first cable retainer adapted to rotateably retain an end of a first cable in the first cable pivot assembly, the first cable rotatable about a fourth axis; a second cable retainer in the second pivot assembly, the second cable retainer adapted to rotateably retain an end of a second cable in the second pivot assembly, the second cable rotatable about a fifth axis; wherein the fourth and fifth axes parallel to each other and the fourth and fifth axes are perpendicular to the first, second and third axis.