Abstract:
A projection lens is disclosed for imaging a pattern arranged in an object plane of the projection lens into an image plane of the projection lens via electromagnetic radiation having an operating wavelength λ from the extreme ultraviolet range. The projection lens includes a multiplicity of mirrors having mirror surfaces arranged in a projection beam path between the object plane and the image plane so that a pattern of a mask in the object plane is imagable into the image plane via the mirrors. A first imaging scale in a first direction running parallel to a scan direction is smaller in terms of absolute value than a second imaging scale in a second direction perpendicular to the first direction. The projection lens also includes a dynamic wavefront manipulation system for correcting astigmatic wavefront aberration portions caused by reticle displacement.
Abstract:
A projection exposure apparatus for microlithography includes a projection lens which includes a plurality of optical elements for imaging mask structures onto a substrate during an exposure process. The projection exposure apparatus also includes at least one manipulator configured to change, as part of a manipulator actuation, the optical effects of at least one of the optical elements within the projection lens by changing a state variable of the optical element along a predetermined travel. The projection exposure apparatus further includes an algorithm generator configured to generate a travel generating optimization algorithm, adapted to at least one predetermined imaging parameter, on the basis of the at least one predetermined imaging parameter.
Abstract:
A projection objective of a microlithographic projection exposure apparatus contains a plurality of optical elements arranged in N>−2 successive sections A1 to AN of the projection objective which are separated from one another by pupil planes or intermediate image planes. According to the invention, in order to correct a wavefront deformation, at least two optical elements each have an optically active surface locally reprocessed aspherically. A first optical element is in this case arranged in one section Aj, j=1 . . . N and a second optical element is arranged in another section Ak, k=1 . . . N, the magnitude difference |k−j| being an odd number.
Abstract:
The invention relates to a projection exposure apparatus for semiconductor lithography, comprising at least one manipulator for reducing image aberrations, wherein the manipulator has at least two optical elements that can be positioned relative to one another, wherein at least one of the optical elements is spatially dependent in terms of its effect on an optical wavefront passing therethrough such that a local phase change of a wavefront propagating in the optical system is produced in the case of a relative movement of the optical elements against one another. Here, the spatially dependent effect of the at least one optical element can be set in a reversible dynamic manner.
Abstract:
An illumination and displacement device for a projection exposure apparatus comprises an illumination optical unit for illuminating an illumination field. An object holder serves for mounting an object in such a way that at least one part of the object can be arranged in the illumination field. An object holder drive serves for displacing the object during illumination in an object displacement direction. A correction device serves for the spatially resolved influencing of an intensity of the illumination at least of sections of the illumination field, wherein there is a spatial resolution of the influencing of the intensity of the illumination of the illumination field at least along the object displacement direction. This results in an illumination and displacement device in which field-dependent imaging aberrations which are present during the projection exposure do not undesirably affect a projection result.
Abstract:
A projection exposure apparatus for semiconductor technology includes an optical arrangement with an optical element having an optically effective surface. The optical arrangement also includes an actuator embedded in the optical element. The actuator is outside the optically effective surface and outside the region located behind the optically effective surface. The optical arrangement is set up to deform the optically effective surface.
Abstract:
The disclosure relates to an optical element, including: a substrate, a first coating, which is disposed on a first side of the substrate and is configured for reflecting radiation having a used wavelength (λEUV) in the EUV wavelength range, and a second coating, which is disposed on a second side of the substrate, for influencing heating radiation that is incident on the second side of the substrate. The disclosure also relates to an optical arrangement having at least one such optical element.
Abstract:
The invention relates to a projection exposure apparatus for semiconductor lithography, comprising at least one manipulator for reducing image aberrations, wherein the manipulator has at least two optical elements that can be positioned relative to one another, wherein at least one of the optical elements is spatially dependent in terms of its effect on an optical wavefront passing therethrough such that a local phase change of a wavefront propagating in the optical system is produced in the case of a relative movement of the optical elements against one another. Here, the spatially dependent effect of the at least one optical element can be set in a reversible dynamic manner.
Abstract:
A projection lens is disclosed for imaging a pattern arranged in an object plane of the projection lens into an image plane of the projection lens via electromagnetic radiation having an operating wavelength λ from the extreme ultraviolet range. The projection lens includes a multiplicity of mirrors having mirror surfaces arranged in a projection beam path between the object plane and the image plane so that a pattern of a mask in the object plane is imagable into the image plane via the mirrors. A first imaging scale in a first direction running parallel to a scan direction is smaller in terms of absolute value than a second imaging scale in a second direction perpendicular to the first direction. The projection lens also includes a dynamic wavefront manipulation system for correcting astigmatic wavefront aberration portions caused by reticle displacement.
Abstract:
A projection lens images a pattern of a mask arranged in the region of an object plane of the projection lens into an image plane of the projection lens via electromagnetic radiation with a work wavelength λ