Abstract:
Systems and methods are disclosed for reducing engine fuel consumption during regenerative braking. According to certain embodiments, the regenerative braking system has an engine, a generator, a rectifier, a first inverter, a traction motor, and a reverse recovery unit. The generator is configured to be driven by the engine to produce AC electrical power. The rectifier is configured to receive AC electrical power from the generator and convert the AC power to DC power. The first inverter is configured to receive the DC power and convert the DC power to AC power. The traction motor is configured to be driven by the AC power in a traction mode, and to produce regenerated power when rotated in reverse in a regenerative braking mode. The reverse recovery unit has a second inverter and a filter. The second inverter is electrically connected in parallel with the rectifier and configured to communicate at least part of the regenerated power from the traction motor to the generator during the regenerative braking mode. The filter is electrically connected downstream of the second inverter and in parallel with the rectifier. The filter is configured to filter transient voltage generated by the second inverter during the regenerative braking mode.
Abstract:
The present disclosure is related to a method for regenerative braking of a machine. The machine includes an electric drive assembly. The electric drive assembly includes a generator, a motor and a direct current bus and a regenerative brake assembly disposed between them. The regenerative braking assembly includes an inverter. The method includes connecting a phase leg between the direct current bus and the inverter. The phase leg includes an inductor and an electric switch. The phase leg boosts the regenerative voltage. The boosted regenerative voltage is then fed back to control a braking torque from the motor and directed back to the generator.
Abstract:
The disclosure describes, in one aspect, a method of braking a machine having an electric drive configuration. The electric drive configuration includes at least one electric retarding system connected to a first set of wheels. Additionally, a first friction brake system connects to the first set of wheels to provide a braking output torque. A second friction brake system connects to a second set of wheels and provides a second braking output torque. The system calculates and applies a braking ratio between the electric and friction braking systems based upon both user controls and conditions encountered.
Abstract:
A motor driver for driving a motor is disclosed. The motor driver has a first power bus, a first switching device coupled between the first power bus and a first terminal of the motor, a second power bus, a second switching device coupled between the second power bus and a second terminal of the motor, and an integrated braking chopper coupled between the first and second power buses. The integrated braking chopper is configured to dissipate an extra power generated by the motor.
Abstract:
A control system for an alternating current (AC) machine having a rotor and a stator is disclosed. The control system may include a direct current (DC) link providing a variable DC link voltage; an inverter module operatively coupled between the DC link and the AC machine, and a controller in communication with the inverter module. The inverter module may include a plurality of gates in selective communication with each phase of the stator. The controller may be configured to receive a signal indicative of the variable DC link voltage, receive a signal indicative of a rotational speed of the rotor, receive a torque command, and generate a direct-axis current command and a quadrature-axis current command using the variable DC link voltage, the rotational speed, and the torque command as inputs into a three-dimensional lookup table preprogrammed into a memory associated with the controller.
Abstract:
The present disclosure is related to a method for energy management for an electric drive system during regenerative braking of a machine. The machine includes an electric drive assembly. The electric drive assembly includes a generator, a motor, a primary direct current bus and a secondary direct current bus having a regenerative brake assembly. The method of energy management includes connecting at least a chopper and a crowbar across the secondary direct current bus. Further, the method includes directing a secondary power stored during regenerative braking, from the primary or secondary or both the buses through the chopper or the crowbar during fault condition.