摘要:
Methods for providing pharmaceutical compositions and objects with identification regions and identification features which are difficult to detect. Microlithography, nanolithography, and stamping methods are used. The identification features can be positive protrusions or negative indentations with respect to the surface. The identification regions can comprise bar codes and holograms. DPN printing or other lithographies such as electron beam lithography, optical lithography, or nanoimprint lithography can be used to prepare stamps, which are then used to prepare the identification features. Redundant patterns can be formed. The invention is useful for counterfeit prevention. An apparatus for stamping the identification features is also described.
摘要:
Methods for providing pharmaceutical compositions and objects with identification regions and identification features which are difficult to detect. Microlithography, nanolithography, and stamping methods are used. The identification features can be positive protrusions or negative indentations with respect to the surface. The identification regions can comprise bar codes and holograms. DPN printing or other lithographies such as electron beam lithography, optical lithography, or nanoimprint lithography can be used to prepare stamps, which are then used to prepare the identification features. Redundant patterns can be formed. The invention is useful for counterfeit prevention. An apparatus for stamping the identification features is also described.
摘要:
Methods for providing pharmaceutical compositions and objects with identification regions and identification features which are difficult to detect. Microlithography, nanolithography, and stamping methods are used. The identification features can be positive protrusions or negative indentations with respect to the surface. The identification regions can comprise bar codes and holograms. DPN printing or other lithographies such as electron beam lithography, optical lithography, or nanoimprint lithography can be used to prepare stamps, which are then used to prepare the identification features. Redundant patterns can be formed. The invention is useful for counterfeit prevention. An apparatus for stamping the identification features is also described.
摘要:
Stamps and methods of making stamps for applications in anti-counterfeiting and authentication. The stamps are relatively small in size and feature nanoscale and microscale identification regions and features. High throughput manufacturing and high resolution methods are used to make the stamps including electron beam lithography and optical lithography. Anti-fouling coatings can be applied.
摘要:
Stamps and methods of making stamps for applications in anti-counterfeiting and authentication. The stamps are relatively small in size and feature nanoscale and microscale identification regions and features. High throughput manufacturing and high resolution methods are used to make the stamps including electron beam lithography and optical lithography. Anti-fouling coatings can be applied.
摘要:
Stamps and methods of making stamps for applications in anti-counterfeiting and authentication. The stamps are relatively small in size and feature nanoscale and microscale identification regions and features. High throughput manufacturing and high resolution methods are used to make the stamps including electron beam lithography and optical lithography. Anti-fouling coatings can be applied.
摘要:
Stamps and methods of making stamps for applications in anti-counterfeiting and authentication. The stamps are relatively small in size and feature nanoscale and microscale identification regions and features. High throughput manufacturing and high resolution methods are used to make the stamps including electron beam lithography and optical lithography. Anti-fouling coatings can be applied.
摘要:
Improved actuated probes suitable for scanning probe lithography or microscopy, and especially direct-write nanolithography and method of fabrication thereof. In one embodiment, thermomechanically actuated cantilevers with oxide-sharpened microcast tips are inexpensively fabricated by a process that comprises low-temperature wafer bonding, such as (gold) thermocompressive bonding, eutectic or adhesive bonding. Also provided is a flexcircuit that electrically interconnects the actuated probes to external circuitry and mechanically couples them to the instrument actuator. An improved scanning probe lithography instrument, hardware and software, can be built around the actuated cantilevers and the flexcircuit. Finally, provided is an improved microfluidic circuit to deliver chemical compounds to the tips of (actuated) probes and a fabrication method for tall, high-aspect-ratio tips.
摘要:
An apparatus for use in fabricating structures and depositing materials from tips to surfaces for patterning in direct-write mode, providing ability to travel macroscopic distances and yet provide for nanoscale patterning. Useful in small scale fabrication and nanolithography. The instrument can be compact and used on a laboratory bench or desktop. An apparatus comprising: at least one multi-axis assembly comprising a plurality of nanopositioning stages, at least one pen assembly, wherein the pen assembly and the multi-axis assembly are adapted for delivery of material from the pen assembly to a substrate which is positioned by the multi-axis assembly, at least one viewing assembly, at least one controller. Nanopositioning by piezoelectric methods and devices and motors is particularly useful. The apparatus can include integrated environmental chambers and housings, as well as ink reservoirs for materials to be delivered. The viewing assembly can be a microscope with a long working distance. Particularly useful for fabrication of bioarrays or microarrays. The multi-axis assembly can be a five-axis assembly. Software can facilitate efficient usage.
摘要:
An apparatus for use in fabricating structures and depositing materials from tips to surfaces for patterning in direct-write mode, providing ability to travel macroscopic distances and yet provide for nanoscale patterning. Useful in small scale fabrication and nanolithography. The instrument can be compact and used on a laboratory bench or desktop. An apparatus comprising: at least one multi-axis assembly comprising a plurality of nanopositioning stages, at least one pen assembly, wherein the pen assembly and the multi-axis assembly are adapted for delivery of material from the pen assembly to a substrate which is positioned by the multi-axis assembly, at least one viewing assembly, at least one controller. Nanopositioning by piezoelectric methods and devices and motors is particularly useful. The apparatus can include integrated environmental chambers and housings, as well as ink reservoirs for materials to be delivered. The viewing assembly can be a microscope with a long working distance. Particularly useful for fabrication of bioarrays or microarrays. The multi-axis assembly can be a five-axis assembly. Software can facilitate efficient usage.