摘要:
The present invention provides a method of in-situ cleaning polymers from holes on a semiconductor wafer and in-situ removing the silicon nitride layer. The semiconductor wafer comprising a substrate, a silicon nitride (Si3N4) layer on the substrate, a silicon oxide (SiO2) layer on the silicon nitride layer, and a photo-resist layer on the silicon oxide layer. The silicon oxide layer and the photo-resist layer have a hole extending down to the silicon nitride layer. The hole contains polymer left after etching of the silicon oxide layer. The method comprises performing a in-situ plasma ashing process by injecting oxygen (O2) and argon (Ar) to completely remove the photo-resist layer and the polymer remaining within the hole. Subsequently, the silicon nitride layer was removed in the same chamber. The flow rate of O2 is maintained between 50˜2000 sccm (standard cubic centimeter per minute) and the flow rate of Ar is maintained between 50˜500 sccm.
摘要:
The present invention relates to a method of forming a contact hole on the semiconductor wafer. The semiconductor wafer comprises, in ascending order, a substrate, a silicon nitride layer, a silicon oxide layer, and a photo-resist layer. There is a hole in the photo-resist layer. The method comprises: (1) performing a first anisotropic etching process in a downward direction to remove the silicon oxide layer under the hole down to the surface of the silicon nitride layer to form a recess; (2) performing an in-situ plasma cleaning process to entirely remove the polymer material remaining at the bottom of the recess; (3) performing an in-situ second anisotropic etching process in a downward direction to remove the silicon nitride layer from the bottom of the recess down to the surface of the substrate to form the contact hole; (4) performing another in-situ cleaning process to entirely remove the polymer material remaining at the bottom of the contact hole.
摘要:
A method of manufacturing metallic interconnects. A substrate has a copper line formed therein. An inter-metal dielectric layer is formed over the substrate and the copper line. A patterned photoresist layer is formed over the inter-metal dielectric layer. The inter-metal dielectric layer is etched to form a trench and a contact opening that exposes a portion of the copper line, wherein the contact opening is under the trench. At a low temperature and using a plasma derived from a gaseous mixture N2H2 (H2:4%)/O2, the photoresist layer is removed. Any copper oxide layer formed on the copper line in the process of removing photoresist material is reduced back to copper using gaseous N2H2 (H2:4%). A barrier layer conformal to the trench and the contact opening profile is formed. Copper is deposited to form a conformal first copper layer over the trench and the contact opening. Using the first copper layer as a seeding layer, a copper or a copperless electroplating is carried out so that a second copper layer is grown anisotropically over the first copper layer.
摘要翻译:一种制造金属互连的方法。 基板上形成有铜线。 在衬底和铜线之上形成金属间介电层。 在金属间介电层上形成图案化的光致抗蚀剂层。 蚀刻金属间电介质层以形成暴露铜线的一部分的沟槽和接触开口,其中接触开口在沟槽下方。 在低温下并使用来自气态混合物N 2 H 2(H 2:4%)/ O 2)的等离子体,除去光致抗蚀剂层。 在除去光致抗蚀剂材料的工艺中在铜线上形成的任何铜氧化物层都使用气态N 2 H 2(H 2:4%)还原成铜。 形成与沟槽一致的阻挡层和形成接触开口轮廓。 沉积铜以在沟槽和接触开口上形成共形的第一铜层。 使用第一铜层作为接种层,进行铜或无铜电镀,使得第二铜层在第一铜层上各向异性地生长。
摘要:
An oxide etching method using low-medium density plasma includes a first etching step to pre-etch the oxide layer with low etching selectivity etchant to pre-form a contact opening and a monitoring opening. The low etching selectivity etchant can also etch the photoresist layer and the photoresist reaction residue. Then, a second etching with high etching selectivity on the oxide is performed to completely form the contact opening with a SAC property and the monitoring opening. The openings expose the substrate.
摘要:
An etching method used in the high density plasma etching system to etch a silicon oxide dielectric layer to form openings of different depths. The method uses a mixture of C.sub.4 H.sub.8, CH.sub.2 F.sub.2, and Ar as an etching gas source to etch the silicon oxide dielectric layer, forming a plurality of openings of a first depth. A mixture of C.sub.4 H.sub.8, CO, and Ar is used as an etching gas source to etch the silicon oxide dielectric layer exposed by the first opening, so that the opening is deepened to the second depth. Using a mixture of C.sub.4 H.sub.8, CH.sub.2 F.sub.2, CO, and Ar as the etching gas source, the silicon oxide dielectric layer exposed by the opening is etched, so that the openings are deepened to the third depth and the fourth depth.
摘要:
A method of forming a dual damascene structure. A first dielectric layer, an etching stop layer, a second dielectric layer and a hard mask layer are sequentially formed over a substrate. Photolithographic and etching operations are conducted to remove a portion of the hard mask layer, the second dielectric layer, the etching stop layer and the first dielectric layer so that a via opening is formed. A conformal dielectric layer is formed on the surface of the hard mask layer and the interior surface of the via opening. An anisotropic etching operation is carried out to form spacers on the sidewalls of the via opening. A patterned photoresist layer is formed over the hard mask layer. Using the patterned photoresist layer as a mask, a portion of the second dielectric layer is removed to form a trench. The patterned photoresist layer is removed. Conductive material is deposited over the substrate to fill the via opening and the trench. Chemical-mechanical polishing is conducted to remove excess conductive material above the hard mask layer.
摘要:
A substrate is provided. A first dielectric is formed over the substrate, and an etching stop layer and a second dielectric are formed in turn on the first dielectric by deposition. An anti-reflection layer is formed over the second dielectric. Then, a photo-resist layer is formed and defined over the anti-reflection layer. A gap-filling material is filled on the second dielectric and into the via hole. Subsequently, the gap-filling material is etched back and is turned on the end point and the long over etch is applied to make sure the photo-resist thickness is below middle stop layer. If the first dielectric reacts with the photo-resist plug in the via hole, the bottom anti-reflection coating or thin oxide are used as a barrier before the trench photo-resist is patterned. If the first dielectric does not react with the photo-resist plug in the via hole, the trench photo-resist is patterned directly. Then, the trench etch is performed.
摘要:
A method for high-density plasma etching. A substrate is provided. A material layer is formed on the substrate. A patterned photo-resist layer is formed on the oxide layer. The material layer is patterned by the high-density plasma etching, simultaneously, a formation of a barrier layer over the substrate with the patterning process is suppressed and nitrogen gas generated in the patterned photo-resist layer is reduced.
摘要:
A seasoning process for an etcher which is performed before etching a dielectric layer to expose a metal silicide layer. The seasoning process includes the first plasma sputtering process and the second plasma sputtering process. A wafer containing the metal silicide layer thereon is placed in the etcher with an etchant and the first plasma sputtering process is performed. Several silicon wafers are successively placed in the etcher to perform the second plasma sputtering process.
摘要:
A multilevel contact etching method to form a contact opening is provided. The method contains using an inductively coupled plasma (ICP) etcher to produce a high plasma density condition. The plasma gas etchant is composed of C.sub.4 F.sub.8 /CH.sub.2 F.sub.2 /CO/Ar with a ratio of 3:4:12:80 so that silicon nitride can be selectively etched while the silicon and silicide are not etched. Each content ratio of the plasma gas etchant allows a variance of about 20%. Wall temperature of the ICP etcher is about 100.degree. C.-300.degree. C. A cooling system for a wafer pad is about -20.degree. C.-20.degree. C. Chamber pressure is about 5-100 mtorr. Bias power on the wafer pad is about 1000 W-3000 W. Source power of an inductance coil is about 500 W-3000 W.