Abstract:
An LED housing, in which a heat conducting part has a chip mounting area, a heat connecting area opposed to the chip mounting area and a neck between them. Fixing parts have first ends engaged with the neck. An electrical connecting part has a wire connecting area placed adjacent to the chip mounting area and an external power connecting area connected to the wire connecting area. A housing body of molding material integrally holds the heat conducting part, the fixing parts and the electrical connecting part while isolating the electrical connecting part from the heat conducting part. The LED housing fixes the neck of the heat conducting part at both sides, thereby stably coupling the heat conducting part to the housing body. The fixing parts can spread heat from the heat conducting part to lateral regions of the LED housing, thereby more efficiently spreading heat.
Abstract:
The invention relates to an LED housing and its fabrication method. In the LED housing, a heat conducting part has a chip mounting area, a heat connecting area opposed to the chip mounting area and a groove formed adjacent to the heat connecting area. An electrical connecting part has a wiring area placed adjacent to the chip mounting area and an external power connecting area led to the wiring area. A housing body is made of molding resin, and integrally holds the heat conducting part and the electrical connecting part while isolating the electrical connecting part from the heat conducting part. The housing body is provided with a recess extended from a portion of the groove of the heat conducting part to a side of the housing body. In this fashion, the invention can overcome restricted application problems by isolating the electrical connecting parts from the heat conducting part.
Abstract:
An apparatus and method for matching impedance of an antenna by using Standing Wave Ratio (SWR) information is provided. While the impedance of the impedance matching unit is controlled, a region of a Smith chart in which initial total impedance of the impedance matching unit and the antenna is located by using an SWR calculated by an SWR operation unit, and the impedance of the impedance matching unit is controlled according to the determined region, thus correctly matching the impedance of the antenna.
Abstract:
A side view LED package for a backlight unit includes a package body having a cavity with an inclined inner sidewall, first and second lead frames arranged in the package body, the cavity of the package body exposing a portion of at least one of the first and second lead frames placed in a bottom of the cavity to outside, a light emitting diode chip mounted on the bottom of the cavity to be electrically connected to the first and second lead frames, and a transparent encapsulant arranged in the cavity surrounding the light emitting diode chip. The cavity has a depth larger than a mounting height of the light emitting diode chip and not exceeding six times of the mounting height. The height of the sidewall is shortened to improve beam angle characteristics of emission light, increase light quantity, and prevent a molding defect of the sidewall.
Abstract:
A side view LED package for a backlight unit includes a package body having a cavity with an inclined inner sidewall, first and second lead frames arranged in the package body, the cavity of the package body exposing a portion of at least one of the first and second lead frames placed in a bottom of the cavity to outside, a light emitting diode chip mounted on the bottom of the cavity to be electrically connected to the first and second lead frames, and a transparent encapsulant arranged in the cavity surrounding the light emitting diode chip. The cavity has a depth larger than a mounting height of the light emitting diode chip and not exceeding six times of the mounting height. The height of the sidewall is shortened to improve beam angle characteristics of emission light, increase light quantity, and prevent a molding defect of the sidewall.