摘要:
A system and method is available for fabricating a field emitter device, where in an emitter material, such as copper, is deposited over a resistive layer which has been deposited upon a substrate. Two ion beam sources are utilized. The first ion beam source is directed at a target material, such as molybdenum, for sputtering molybdenum onto the emitter material. The second ion beam source is utilized to etch the emitter material to produce cones or micro-tips. A low work function material, such as amorphous diamond, is then deposited over the micro-tips.
摘要:
Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide, chemically-converted graphene, and functionalized chemically-converted graphene. Derivatized graphenes and methods for production thereof are disclosed. The derivatized graphenes are prepared from a chemically-converted graphene through derivatization with a plurality of functional groups. Derivatization can be accomplished, for example, by reaction of a chemically-converted graphene with a diazonium species. Methods for preparation of graphite oxide are also disclosed.
摘要:
According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.
摘要:
According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.
摘要:
A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.
摘要:
According to some embodiments, a method for separating a first fraction of a single wall carbon nanotubes and a second fraction of single wall carbon nanotubes includes, but is not limited to: flowing a solution comprising the nanotubes into a dielectrophoresis chamber; applying a DC voltage, in combination with an AC voltage, to the dielectrophoresis chamber; and collecting a first eluent from the dielectrophoresis chamber, wherein the first eluent comprises the first fraction and is depleted of the second fraction, wherein the first and second fractions differ by at least one of conductivity, diameter, length, and combinations thereof.
摘要:
A material growing by deposition is exposed to a low energy beam of ionized dopant. The ion beam energy is sufficient to implant the dopant in the growing surface of the material. This doping method will work well for any dopant that is substantially immobile in the material at the temperature necessary for deposition growth.
摘要:
According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.
摘要:
Energy is stored by injecting fluid into a hydraulic fracture in the earth and producing the fluid hack while recovering power. The method is particularly adapted to storage of large amounts of energy such as in grid-scale electric energy systems. The hydraulic fracture may be formed and treated with resin so as to limit fluid loss and to increase propagation pressure.
摘要:
A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.