Abstract:
A method and an electronic device for synchronizing information of dual operating systems and a recording medium are provided. The method is used for synchronizing information of a first operating system and a second operating system when an electronic device is switching from a first operating system to a second operating system. First, the second operating system sends an information requesting message to a controller of the electronic device when the first operating system is switched to the second operating system. The controller checks if the first operating system operates in a work mode. If the first operating system operates in the work mode, the controller forwards the information requesting message to the first operating system, so as to obtain the information of the first operating system. Finally, the second system synchronizes the information recorded therein according to the obtained information.
Abstract:
A method for manufacturing multi-gate transistor device includes providing a semiconductor substrate having a patterned semiconductor layer, a gate dielectric layer and a gate layer sequentially formed thereon, forming a multiple insulating layer sequentially having a first insulating layer and a second insulating layer and covering the patterned semiconductor layer and the gate layer, removing a portion of the multiple insulating layer to simultaneously form a first spacer around the gate layer and a second spacer around the patterned semiconductor layer, removing the second spacer to expose a portion of the first insulating layer covering the patterned semiconductor layer and simultaneously removing a portion of the first spacer to form a third spacer around the gate layer, and removing the exposed first insulating layer to expose the patterned semiconductor layer.
Abstract:
A system and an electronic device having multiple operating systems and an operating method thereof are provided. The electronic device includes a display and a system having a first operating system, a second operating system, and an embedded controller. The first operating system consumes less power than the second operating system. The embedded controller receives an input signal to switch between the first operating system and the second operating system and display an interface of the switched operating system on a screen of the display. The first operating system and the embedded controller remain in an alive state after the electronic device is turned on, and the second operating system enters a non-working state after a preset idle time.
Abstract:
An anti-wearing nut or bolt including a plurality of polygonal sides circumferentially formed on a head portion of the nut or bolt and; each polygonal side including: two inclined sub-sides respectively inclined outwardly convergently from opposite apexes of each polygonal side, each inclined sub-side extrapolatively defining a small biasing acute angle between each inclined sub-side and a corresponding socket side, and an intermediate sub-side transversely intersecting the two inclined sub-sides; whereby upon a clockwise or counter-clockwise rotation of the socket, one inclined sub-side of the nut or bolt will be planarly engaged with each socket side, without being linearly bitten or dogged, to thereby prevent wearing or damage of the apexes of the nut or bolt.
Abstract:
A method for manufacturing multi-gate transistor device includes providing a semiconductor substrate having a patterned semiconductor layer, a gate dielectric layer and a gate layer sequentially formed thereon, forming a multiple insulating layer sequentially having a first insulating layer and a second insulating layer and covering the patterned semiconductor layer and the gate layer, removing a portion of the multiple insulating layer to simultaneously form a first spacer around the gate layer and a second spacer around the patterned semiconductor layer, removing the second spacer to expose a portion of the first insulating layer covering the patterned semiconductor layer and simultaneously removing a portion of the first spacer to form a third spacer around the gate layer, and removing the exposed first insulating layer to expose the patterned semiconductor layer.
Abstract:
A manufacturing method for a metal gate includes providing a substrate having at least a semiconductor device with a conductivity type formed thereon, forming a gate trench in the semiconductor device, forming a work function metal layer having the conductivity type and an intrinsic work function corresponding to the conductivity type in the gate trench, and performing an ion implantation to adjust the intrinsic work function of the work function metal layer to a target work function.
Abstract:
A method for synchronizing information of dual operating systems is provided. The method is used for synchronizing information of a first operating system and a second operating system when an electronic device is switching from a first operating system to a second operating system. First, the second operating system sends an information requesting message to a controller of the electronic device when the first operating system is switched to the second operating system. The controller checks if the first operating system operates in a work mode. If the first operating system operates in the work mode, the controller forwards the information requesting message to the first operating system, so as to obtain the information of the first operating system. Finally, the second system synchronizes the information recorded therein according to the obtained information.
Abstract:
A silicon dioxide film fabricating process includes the following steps. Firstly, a substrate is provided. A rapid thermal oxidation-in situ steam generation process is performed to form a silicon dioxide film on the substrate. An annealing process is performed to anneal the substrate in a first gas mixture at a temperature in the range of 1000° C. to 1100° C.
Abstract:
A system and an electronic device having multiple operating systems and an operating method thereof are provided. The electronic device includes a display and a system having a first operating system, a second operating system, and an embedded controller. The first operating system consumes less power than the second operating system. The embedded controller receives an input signal to switch between the first operating system and the second operating system and display an interface of the switched operating system on a screen of the display. The first operating system and the embedded controller remain in an alive state after the electronic device is turned on, and the second operating system enters a non-working state after a preset idle time.
Abstract:
The present invention compensates bass frequency for a loudspeaker without using any sensor. The strength and stability of the loudspeaker are enhanced and the working frequency is lowered too. Adaptive loudnesses for various spaces are set. And the parameter drift owing to long-term operation is restrained as well.