Abstract:
Basic tone waveform corresponding to a designated tone color and pitch is generated in each of a plurality of channels. Effect is imparted to the basic tone waveform in accordance with an algorithm for providing a predetermined effect, independently for each of the channels. The effect to be imparted is controlled in accordance with the designated tone pitch, separately for each of the channels. The effect impartment may be conducted using a processor, such as a DSP, executing a predetermined program containing a predetermined effect-imparting algorithm. In one example of the effect-imparting algorithm, a delay loop is employed through which an input exciting signal is circulated while being delayed, and an effect specific to an electromagnetic pickup of an electric guitar can be approximated by controlling the delay amount in the delay loop. In another example of the effect-imparting algorithm, a ransom signal is generated to control a cutoff frequency on the basis of the random signal, the basic tone waveform is filtered in accordance with the thus-controlled cutoff frequency, and the resultant filtered tone waveform is circulated through a delay loop whose delay amount is controlled in accordance with the designated tone pitch.
Abstract:
In a musical tone synthesizing apparatus, employed by an electronic musical instrument, an excitation signal circulates through a waveguide to form a musical tone signal corresponding to a synthesized musical tone. The waveguide is configured by a loop circuit containing an adder, a delay circuit, a filter and an amplifier. A delay time used for the delay circuit is determined in response to a tone pitch of a musical tone to be produced, while a filter coefficient used for the filter is determined in response to a tone color of the musical tone to be produced. A multiplication coefficient used for the multiplier is generated in accordance with one of the tone pitch and delay time; or the multiplication coefficient is computed on the basis of the tone pitch and a decay rate which is set by a performer. In addition, a different multiplication coefficient can be generated in response to a state of an envelope waveform of the musical tone to be produced. For example, the multiplication coefficient to be generated for an attack portion of the envelope waveform can be differed from the multiplication coefficient to be generated for a decay portion of the envelope waveform. By finely controlling a loop gain of the waveguide corresponding to the multiplication coefficient, a fine control can be performed for the synthesis of the musical tones.
Abstract:
A musical tone synthesizing apparatus provides a time-varying signal processing circuit the transfer function of which gradually varies over time in order to gradually vary over time the tone color of a synthesized musical tone. A number of time-varying signal processing circuits are presented. An interpolation-type-time-varying signal processing circuit is provided with interpolators for interpolating control parameters generated based on a desired musical tone, a signal processing circuit carrying out a signal operation based on the interpolated control parameters on an input signal incomming thereto. A mixing-type or distribution-type time-varying signal processing circuit is provided with a plurality of signal processing circuits for carrying out signal operations based on control parameters on input signals, and with a mixer which mixes the output signals of the signal processing circuits in such a way that the mixing ratio gradually varies over time or with a distribution circuit which distributes an input signal to the signal processing circuits in such a way that the distribution ratio gradually varies over time.
Abstract:
An electronic music system includes a computer which performs a sequencing function and a remote controller. The remote controller is provided with a start operator and a selection operator. In response to an instruction made by the start operator of the remote controller, the computer or the remote controller adds a new track on a sequencer configured on the computer. The computer or the remote controller then offers options of available different types of tone generators used for the track, and in accordance with a selection made by the selection operator in a state where the available different types of tone generators have been offered, assigns the selected type of tone generator to the track.
Abstract:
In an engine provided with a variable valve mechanism which varies an operating angle of an intake valve and a lift amount thereof, when an engine operation is automatically stopped after the establishment of an idling stop condition, the operating angle of the intake valve and the lift amount thereof are varied to be smaller, so that a load of the variable valve mechanism at an engine operation restarting time is low. Then, when the engine operation restarting is requested, a first explosion pressure is obtained by performing fuel injection and ignition on a cylinder stopped in an expansion stroke, so that the engine operation is started. Further, after a first intake stroke, the operating angle of the intake valve and the lift amount thereof are increased.
Abstract:
The tone pitch of a given tone waveform is detected by forming an envelope waveform of the given tone waveform, holding the level of the envelope waveform at each of the zero cross times of the given tone waveform and releasing such holding starting new holding when the level of the given tone waveform exceeds the held level of the envelope waveform, and determining the pitch of the given tone waveform based on the period between the adjacent zero cross times, A correction target note pitch is provided, to which the detected tone pitch of the given tone waveform is corrected. The detected tone pitch, the correction target note pitch and the amount of correction are exhibited for the user to visually understand the pitch correction.
Abstract:
Filtering is performed on original waveform to remove components of a predetermined frequency band from the waveform, and dividing positions of the original waveform data are determined on the basis of envelope levels of the filtered waveform. The dividing positions may be determined on the basis of differentiation of an envelope of the filtered waveform. Rise positions in the original waveform data are detected, and one rise position may be selected from among one or more rise positions detected within a predetermined range of the original waveform and extracted as a dividing position of the original waveform. Presumed beat positions in the original waveform may be detected, and rise positions of the original waveform may be detected within predetermined ranges corresponding to the presumed beat positions. In parallel with reproduction of automatic performance, waveform data are stored in memory along with synchronization control data indicative of relationship in processing timing between the automatic performance and the waveform data.
Abstract:
An electronic musical instrument includes an ROM which stores tone color parameters for determining musical tone characteristics of musical tone signals. Operating elements are operated to create operation information for controlling the musical tone characteristics on real time basis. A tone generator circuit generates the musical tone signals, based on the cone color parameters read from the ROM and the operation information created by the operating elements. Scene memories and a RAM store the operation information created by the operating elements. The operation information is read from the scene memories or the RAM, in response to an instruction from the operator. The operation formation thus read is supplied to the tone generator circuit.
Abstract:
The intake flow velocity near the jet of a fuel injection valve is obtained on the basis of the engine rotational speed, engine intake air quantity and intake valve opening area. A crank angle position for maximum intake flow velocity is set as the timing for completion of fuel injection by the fuel injection valve. As a result, fuel injection can be reliably completed at a timing giving good fuel atomization characteristics.
Abstract:
By user's pinching operation on a slider 2e of a controller 2, it is judged that the slider 2e has been operated on two points, so that a DAW screen is zoomed in or out in accordance with the speed at which the distance between the two points has changed and the amount by which the distance between the two points has changed. By user's sliding operation on the slider 2e of the controller 2, it is judged that the slider 2e has been operated on one point, so that the function of the DAW is controlled in accordance with the speed at which the slider 2e has moved and the amount by which the slider 2e has moved.