摘要:
An ultrasound therapy system and method is provided that provides directional, focused ultrasound to localized regions of tissue within body joints, such as spinal joints. An ultrasound emitter or transducer is delivered to a location within the body associated with the joint and heats the target region of tissue associated with the joint from the location. Such locations for ultrasound transducer placement may include for example in or around the intervertebral discs, or the bony structures such as vertebral bodies or posterior vertebral elements such as facet joints. Various modes of operation provide for selective, controlled heating at different temperature ranges to provide different intended results in the target tissue, which ranges are significantly effected by pre-stressed tissues such as in-vivo intervertebral discs. In particular, treatments above 70 degrees C., and in particular 75 degrees C., are used for structural remodeling, whereas lower temperatures achieves other responses without appreciable remodeling.
摘要:
An ultrasound therapy system and method is provided that provides directional, focused ultrasound to localized regions of tissue within body joints, such as spinal joints. An ultrasound emitter or transducer is delivered to a location within the body associated with the joint and heats the target region of tissue associated with the joint from the location. Such locations for ultrasound transducer placement may include for example in or around the intervertebral discs, or the bony structures such as vertebral bodies or posterior vertebral elements such as facet joints. Various modes of operation provide for selective, controlled heating at different temperature ranges to provide different intended results in the target tissue, which ranges are significantly affected by pre-stressed tissues such as in-vivo intervertebral discs. In particular, treatments above 70 degrees C., and in particular 75 degrees C., are used for structural remodeling, whereas lower temperatures achieve other responses without appreciable remodeling.
摘要:
An ultrasound therapy system and method is provided that provides directional, focused ultrasound to localized regions of tissue within body joints, such as spinal joints. An ultrasound emitter or transducer is delivered to a location within the body associated with the joint and heats the target region of tissue associated with the joint from the location. Such locations for ultrasound transducer placement may include for example in or around the intervertebral discs, or the bony structures such as vertebral bodies or posterior vertebral elements such as facet joints. Various modes of operation provide for selective, controlled heating at different temperature ranges to provide different intended results in the target tissue, which ranges are significantly affected by pre-stressed tissues such as in-vivo intervertebral discs. In particular, treatments above 70 degrees C., and in particular 75 degrees C., are used for structural remodeling, whereas lower temperatures achieve other responses without appreciable remodeling.
摘要:
A long-term implantable ultrasound therapy system and method is provided that provides directional, focused ultrasound to localized regions of tissue within body joints, such as spinal joints. An ultrasound emitter or transducer is delivered to a location within the body associated with the joint and heats the target region of tissue associated with the joint from the location. Such locations for ultrasound transducer placement may include for example in or around the intervertebral discs, or the bony structures such as vertebral bodies or posterior vertebral elements such as facet joints. Various modes of operation provide for selective, controlled heating at different temperature ranges to provide different intended results in the target tissue, which ranges are significantly effected by pre-stressed tissues such as in-vivo intervertebral discs. In particular, treatments above 70 degrees C., and in particular 75 degrees C., are used for structural remodeling, whereas lower temperatures achieves other responses without appreciable remodeling.
摘要:
A high-power ultrasound heating applicator for minimally-invasive thermal treatment of uterine fibroids or myomas. High-intensity interstitial ultrasound, applied with minimally-invasive laparoscopic or hysteroscopic procedures, is used to effectively treat fibroids within the myometrium in lieu of major surgery. The applicators are configured with high-power capabilities and thermal penetration to treat large volumes of fibroid tissue (>70 cm3) in short treatment times (3-20 minutes), while maintaining three-dimensional control of energy delivery to thermally destroy the target volume.
摘要:
A high-power ultrasound heating applicator for minimally-invasive thermal treatment of uterine fibroids or myomas. High-intensity interstitial ultrasound, applied with minimally-invasive laparoscopic or hysteroscopic procedures, is used to effectively treat fibroids within the myometrium in lieu of major surgery. The applicators are configured with high-power capabilities and thermal penetration to treat large volumes of fibroid tissue (>70 cm3) in short treatment times (3-20 minutes), while maintaining three-dimensional control of energy delivery to thermally destroy the target volume.
摘要:
An ultrasound therapy system and method is provided that provides directional, focused ultrasound to localized regions of tissue within body joints, such as spinal joints. An ultrasound emitter or transducer is delivered to a location within the body associated with the joint and heats the target region of tissue associated with the joint from the location. Such locations for ultrasound transducer placement may include for example in or around the intervertebral discs, or the bony structures such as vertebral bodies or posterior vertebral elements such as facet joints. Various modes of operation provide for selective, controlled heating at different temperature ranges to provide different intended results in the target tissue, which ranges are significantly affected by pre-stressed tissues such as in-vivo intervertebral discs. In particular, treatments above 70 degrees C., and in particular 75 degrees C., are used for structural remodeling, whereas lower temperatures achieve other responses without appreciable remodeling.