摘要:
An electrical current (“EC”) manager module may assign a plurality of hardware elements of the PCD to one of two groups. The EC manager module may monitor individual electrical current levels of one of the groups as well as calculate an instantaneous electrical current level for the PCD based on a current charge status for the PCD. The EC manager module may then adjust operation of at least one hardware element to keep operation of the PCD below the calculated instantaneous electrical current level for the PCD. The EC manager module may estimate an electrical current level for one of the groups based on requests issued to hardware elements. The EC manager module may also compare the calculated instantaneous electrical current level to the monitored electrical current level. The calculated instantaneous electrical current level may be compared to minimum current levels listed in a table.
摘要:
An electrical current (“EC”) manager module may assign a plurality of hardware elements of the PCD to one of two groups. The EC manager module may monitor individual electrical current levels of one of the groups as well as calculate an instantaneous electrical current level for the PCD based on a current charge status for the PCD. The EC manager module may then adjust operation of at least one hardware element to keep operation of the PCD below the calculated instantaneous electrical current level for the PCD. The EC manager module may estimate an electrical current level for one of the groups based on requests issued to hardware elements. The EC manager module may also compare the calculated instantaneous electrical current level to the monitored electrical current level. The calculated instantaneous electrical current level may be compared to minimum current levels listed in a table.
摘要:
A base station can communicate resource allocation to a wireless mobile station in an uplink map information element. The base station can identify destination mobile stations using a shorthand connection identifier. The base station parses the connection identifier field into a shorthand connection identifier field and an embedded subfield data field. The shorthand connection identifier field can be sized to support a predetermined number of mobile stations. The base station can further parse the embedded subfield field into a number of sub-fields, each communicating a different set of control information. In one embodiment, the base station utilizes the embedded subfield to communicate power, timing, and frequency information to the destination mobile station.
摘要:
A method for producing an analog output from a digital input is described. A digital pulse train is received having an average value which is proportional to a digital conversion value. The digital pulse train is driven at a periodic interval to produce a modulated tristate-gate output. The modulated tristate-gate output is averaged to produce an analog output. Optionally, the pulse train is also driven at an additional periodic interval having a duty cycle of more, or less, than less than 50%. The pulse train may also be driven steadily.
摘要:
An active cancellation controller receives a signal strength indicator that indicates a power level of a coupled signal from a local wireless transmitter at a local wireless receiver. The active cancellation controller tunes an active cancellation circuit to reduce the signal strength indicator. The active cancellation circuit is to generate a cancellation signal to combine with the coupled signal at the local wireless receiver.
摘要:
Methods and apparatus for reducing out of band emissions through selective resource allocation, transmit power control, or a combination thereof. A resource controller, such as a base station, can allocate uplink resources to a requesting subscriber station based in part on an expected transmit power. The base station can allocate uplink bandwidth to the subscriber station based on an expected subscriber station uplink transmit power and a frequency of a restricted emissions band. Those subscriber stations having higher expected transmit powers are allocated bandwidth further from the restricted emissions band. The subscriber station can perform complementary transmit power control based on allocated uplink resources. The subscriber station can limit a transmit power based in part on a bandwidth allocation, modulation type allocation, or some combination thereof.
摘要:
Automatic gain control (AGC) methods and apparatus that implement a dynamically variable AGC setpoint. The variable AGC setpoint can be determined based in part on the type of modulation used to convey information to the receiver. The AGC setpoint can be set higher than a nominal setpoint for higher order modulation types and can be lower than the nominal setpoint for low order modulation types. The manner in which gain is adjusted can also depend on the modulation type. The gains can be increased according to a front to back priority. The gains can be decreased in a priority that is based on the modulation type. For lower order modulation types, the gain controller can decrease gain according to a back to front priority. For higher order modulation types, the gain controller can maintain linearity of front end amplifiers prior to decreasing gain according to a back to front priority.
摘要:
A base station can communicate resource allocation to a wireless mobile station in an uplink map information element. The base station can identify destination mobile stations using a shorthand connection identifier. The base station parses the connection identifier field into a shorthand connection identifier field and an embedded subfield data field. The shorthand connection identifier field can be sized to support a predetermined number of mobile stations. The base station can further parse the embedded subfield field into a number of sub-fields, each communicating a different set of control information. In one embodiment, the base station utilizes the embedded subfield to communicate power, timing, and frequency information to the destination mobile station.
摘要:
Methods and apparatus for reducing transmit emissions are described herein. The transmit out of band emissions in an adjacent band can be reduced while complying with existing wireless communication standards through utilization of one or more of reduced transmit bandwidth, transmit operating band offset, and channel index remapping. The transceiver can support a receive operating band substantially adjacent to a band edge. The transmit operating band can be offset from an adjacent frequency band, and can use a narrower operating band than is supported by the receiver. The transmit baseband signal can have a reduced bandwidth to reduce the amount of noise. The frequency offset can introduce a larger transition band between the transmit operating band edges and the adjacent frequency band of interest. The transceiver can remap channel assignments to compensate for the frequency offset such that the frequency offset introduced in the transmitter is transparent to channel allocation.
摘要:
Methods and apparatus for reducing transmit emissions are described herein. The transmit out of band emissions in an adjacent band can be reduced while complying with existing wireless communication standards through utilization of one or more of reduced transmit bandwidth, transmit operating band offset, and channel index remapping. The transceiver can support a receive operating band substantially adjacent to a band edge. The transmit operating band can be offset from an adjacent frequency band, and can use a narrower operating band than is supported by the receiver. The transmit baseband signal can have a reduced bandwidth to reduce the amount of noise. The frequency offset can introduce a larger transition band between the transmit operating band edges and the adjacent frequency band of interest. The transceiver can remap channel assignments to compensate for the frequency offset such that the frequency offset introduced in the transmitter is transparent to channel allocation.