摘要:
An electrical current (“EC”) manager module may assign a plurality of hardware elements of the PCD to one of two groups. The EC manager module may monitor individual electrical current levels of one of the groups as well as calculate an instantaneous electrical current level for the PCD based on a current charge status for the PCD. The EC manager module may then adjust operation of at least one hardware element to keep operation of the PCD below the calculated instantaneous electrical current level for the PCD. The EC manager module may estimate an electrical current level for one of the groups based on requests issued to hardware elements. The EC manager module may also compare the calculated instantaneous electrical current level to the monitored electrical current level. The calculated instantaneous electrical current level may be compared to minimum current levels listed in a table.
摘要:
An electrical current (“EC”) manager module may assign a plurality of hardware elements of the PCD to one of two groups. The EC manager module may monitor individual electrical current levels of one of the groups as well as calculate an instantaneous electrical current level for the PCD based on a current charge status for the PCD. The EC manager module may then adjust operation of at least one hardware element to keep operation of the PCD below the calculated instantaneous electrical current level for the PCD. The EC manager module may estimate an electrical current level for one of the groups based on requests issued to hardware elements. The EC manager module may also compare the calculated instantaneous electrical current level to the monitored electrical current level. The calculated instantaneous electrical current level may be compared to minimum current levels listed in a table.
摘要:
Various embodiments of methods and systems for controlling and/or managing thermal energy generation on a portable computing device that contains a heterogeneous multi-core processor are disclosed. Because individual cores in a heterogeneous processor may exhibit different processing efficiencies at a given temperature, thermal mitigation techniques that compare performance curves of the individual cores at their measured operating temperatures can be leveraged to manage thermal energy generation in the PCD by allocating and/or reallocating workloads among the individual cores based on the performance curve comparison.
摘要:
Various embodiments of methods and systems for controlling and/or managing thermal energy generation on a portable computing device are disclosed. Data discarded from one or more processing core registers may be monitored and analyzed to deduce individual workloads that have been processed by each of the cores over a unit of time. From the deduced workloads, the power consumed by each of the cores over the unit of time in order to process the workload can be calculated. Subsequently, a time dependent power density map can be created which reflects a historical and near real time power consumption for each core. Advantageously, because power consumption can be correlated to thermal energy generation, the TDPD map can be leveraged to identify thermal aggressors for targeted, fine grained application of thermal mitigation techniques. In some embodiments, workloads may be reallocated from the identified thermal aggressors to the identified underutilized processing components.
摘要:
A method and system for selecting a thermally optimal airlink for a portable computing device includes monitoring a temperature of the portable computing device as well as determining if the portable computing device has reached a threshold temperature range. Next, an estimated volume of data to be sent over one or more airlinks may be calculated in addition to determining an estimated duration for the data using one or more airlinks. A quality of service needed for the data in connection with the one or more airlinks may be determined. With this estimated data, one or more available airlinks for the data to be transmitted may be compared. After this comparison, one or more thermally optimal airlinks may be selected based on the estimated volume, estimated data rate, and estimated duration. Determining if the portable computing device is proximate to an operator may be used when considering airlinks.
摘要:
Various embodiments of methods and systems for thermally aware booting in a portable computing device (“PCD”) are disclosed. Because bringing high power consumption processing components online when a PCD is booted under less than ideal thermal conditions can be detrimental to the health of the PCD, embodiments leverage a low power processing component early in a boot sequence to authorize, delay or modify the boot sequence based on measured thermal indicators. One exemplary method is essentially a “go/no go” method that delays or authorizes completion of a boot sequence based on the thermal indicator measurements. Another exemplary method modifies a boot sequence of a PCD based on a thermal boot policy associated with a thermal boot state. A thermal boot policy may include allowing the boot sequence to complete by modifying the power frequency to which one or more high power consumption components will be booted.
摘要:
Various embodiments of methods and systems for heuristic determination and thermal analysis of component placement on a printed circuit board (“PCB”) for use in a portable computing device (“PCD”) are disclosed. It is an advantage of embodiments that thermal energy generating components, such as processors, may be heuristically selected and arranged on a selected PCB according to varying layouts and combinations and then evaluated for thermal dissipation efficiency under an assortment of use case scenarios. In this way, users of the system and method may quickly narrow down commercially feasible component layouts, identify the most efficient layouts and then heuristically modify the layouts to develop an optimal arrangement.
摘要:
Various embodiments of methods and systems for determining the thermal status of processing components within a portable computing device (“PCD”) by measuring leakage current on power rails associated with the components are disclosed. One such method involves measuring current on a power rail after a processing component has entered a “wait for interrupt” mode. Advantageously, because a processing component may “power down” in such a mode, any current remaining on the power rail associated with the processing component may be attributable to leakage current. Based on the measured leakage current, a thermal status of the processing component may be determined and thermal management policies consistent with the thermal status of the processing component implemented. Notably, it is an advantage of embodiments that the thermal status of a processing component within a PCD may be established without the need to leverage temperature sensors.