摘要:
The preferred embodiments described herein provide a method and system for increasing programming bandwidth in a non-volatile memory device. In one preferred embodiment, a memory device is provided with a plurality of bits to be stored in a respective plurality of memory cells along a wordline. Some of the bits represent a programmed state, and others represent an un-programmed state. The duration of the programming pulse applied to the wordline is determined by the number of bits that represent the programmed state. In another preferred embodiment, the plurality of bits to be stored in the memory device comprises a first set of bits representing a modification to the stored data and a second set of bits representing an un-programmed state. Other preferred embodiments are provided, and each of the preferred embodiments can be used alone or in combination with one another.
摘要:
The preferred embodiments described herein provide a method for making a write-once memory device read compatible with a write-many file system. In one preferred embodiment, a method for re-writing to a logical address of a write-once memory device is provided. A physical-to-logical address map is built from data stored in the memory device that associates individual physical addresses with individual logical addresses. When a logical address is re-written, data associating that logical address with a new physical address is stored, and data associating that logical address with an old physical address is invalidated. When the logical address is read, the physical-to-logical address map is used to read the new physical address instead of the old physical address. Other preferred embodiments are provided, and each of the preferred embodiments described herein can be used alone or in combination with one another.
摘要:
Support circuitry for a three-dimensional memory array is formed in a substrate at least partially under the three-dimensional memory array and defines open area in the substrate under the three-dimensional memory array. In one preferred embodiment, one or more memory arrays are formed at least partially in the open area under the three-dimensional memory array, while in another preferred embodiment, logic circuitry implementing one or more functions is formed at least partially in the open area under the three-dimensional memory array. In yet another preferred embodiment, both one or more memory arrays and logic circuitry are formed at least partially in the open area under the three-dimensional memory array. Other preferred embodiments are provided, and each of the preferred embodiments can be used alone or in combination with one another.
摘要:
The preferred embodiments described herein provide a three-dimensional memory cache system. In one preferred embodiment, a modular memory device removably connectable to a host device is provided. The modular memory device comprises a substrate, a cache memory array, a three-dimensional primary memory array, and a modular housing. The cache memory array and the three-dimensional primary memory array can be on the same or separate substrates in the modular housing. In another preferred embodiment, an integrated circuit is provided comprising a substrate, a cache memory array in the substrate, and a three-dimensional primary memory array above the substrate. Other preferred embodiments are provided, and each of the preferred embodiments can be used alone or in combination with one another.
摘要:
The preferred embodiments described herein provide a method for altering a word stored in a write-once memory device. In one preferred embodiment, a write-once memory device is provided storing a word comprising a plurality of data bits and a plurality of syndrome bits. The word is altered by identifying X bit(s) in the word that are in an un-programmed state and switching the X bit(s) from the un-programmed state to a programmed state, where X is sufficient to introduce an uncorrectable error in the word. Other preferred embodiments are provided, and each of the preferred embodiments can be used alone or in combination with one another.
摘要:
The preferred embodiments described herein provide a memory device and methods for use therewith. In one preferred embodiment, a method is presented for using a file system to dynamically respond to variability in an indicated minimum number of memory cells of first and second write-once memory devices. In another preferred embodiment, a method for overwriting data in a memory device is described in which an error code is disregarded after a destructive pattern is written. In yet another preferred embodiment, a method is presented in which, after a block of memory has been allocated for a file to be stored in a memory device, available lines in that block are determined. Another preferred embodiment relates to reserving at least one memory cell in a memory device for file structures or file system structures. A memory device is also provided in which file system structures of at least two file systems are stored in the same memory partition. Additionally, methods for permanently preventing modification of data stored in a memory device and for identifying memory cells storing data are disclosed.
摘要:
The preferred embodiments described herein provide a memory device and method for storing and reading data in a write-once memory array. In one preferred embodiment, a plurality of bits representing data is inverted and stored in a write-once memory array. When the inverted plurality of bits is read from the memory array, the bits are inverted to provide the data in its original, non-inverted configuration. By storing data bits in an inverted form, the initial, un-programmed digital state of the memory array is redefined as the alternative, programmed digital state. Other preferred embodiments are provided, and each of the preferred embodiments described herein can be used alone or in combination with one another. For example, the embodiments in which data bits are inverted can be used alone or in combination with the embodiments in which data is redirected.
摘要:
The preferred embodiments described herein provide a memory device and methods for use therewith. In one preferred embodiment, a method is presented for using a file system to dynamically respond to variability in an indicated minimum number of memory cells of first and second write-once memory devices. In another preferred embodiment, a method for overwriting data in a memory device is described in which an error code is disregarded after a destructive pattern is written. In yet another preferred embodiment, a method is presented in which, after a block of memory has been allocated for a file to be stored in a memory device, available lines in that block are determined. Another preferred embodiment relates to reserving at least one memory cell in a memory device for file structures or file system structures. A memory device is also provided in which file system structures of at least two file systems are stored in the same memory partition. Additionally, methods for permanently preventing modification of data stored in a memory device and for identifying memory cells storing data are disclosed.
摘要:
The preferred embodiments described herein provide a memory device and method for storing and reading a file system structure in a write-once memory array. In one preferred embodiment, a plurality of bits representing a file system structure is inverted and stored in a write-once memory array. When the inverted plurality of bits is read from the memory array, the bits are inverted to provide the file system structure bits in their original, non-inverted configuration. With this preferred embodiment, a file system structure can be updated to reflect data stored in the memory array after the file system structure was written. Other preferred embodiments are provided, and each of the preferred embodiments described herein can be used alone or in combination with one another.
摘要:
The preferred embodiments described herein provide a memory device and methods for use therewith. In one preferred embodiment, a method is presented for using a file system to dynamically respond to variability in an indicated minimum number of memory cells of first and second write-once memory devices. In another preferred embodiment, a method for overwriting data in a memory device is described in which an error code is disregarded after a destructive pattern is written. In yet another preferred embodiment, a method is presented in which, after a block of memory has been allocated for a file to be stored in a memory device, available lines in that block are determined. Another preferred embodiment relates to reserving at least one memory cell in a memory device for file structures or file system structures. A memory device is also provided in which file system structures of at least two file systems are stored in the same memory partition. Additionally, methods for permanently preventing modification of data stored in a memory device and for identifying memory cells storing data are disclosed.