摘要:
The invention relates to heart stimulators and implantable atrial pacemakers which utilize a rhythm based atrial capture threshold test wherein in a ventricle based DDI mode a predetermined number of ventricle started atrial and ventricular escape intervals are triggered with an overdrive rate about 20% higher than an intrinsic heart rate. The number of atrial sense events during atrial capture threshold test is counted. Too high of a number of atrial sense events indicates loss of capture due to too small of a pulse strength of the atrial stimulation pulses.
摘要:
The invention relates to heart stimulators and implantable atrial pacemakers which utilize a rhythm based atrial capture threshold test wherein in a ventricle based DDI mode a predetermined number of ventricle started atrial and ventricular escape intervals are triggered with an overdrive rate about 20% higher than an intrinsic heart rate. The number of atrial sense events during atrial capture threshold test is counted. Too high of a number of atrial sense events indicates loss of capture due to too small of a pulse strength of the atrial stimulation pulses.
摘要:
Implantable medical device with an impedance determination unit with constant current/voltage source having current feed terminals connected to electrodes for intracorporal placement which generates measuring current pulses having constant current/voltage, for causing a current through a body via intracorporally placed electrodes, a measuring unit for measuring voltage/current strength of voltage/current fed through body, an impedance value determination unit connected to the current/voltage source and adapted to determine an impedance value for each measuring current pulse, and an impedance measuring control and evaluation unit connected to the impedance determination unit which controls the unit and evaluates a sequence of consecutive impedance values, the impedance determination unit further adapted to determine at least intrathoracic and intracardiac impedance values for same period of time, the intrathoracic values sampled with a lower sampling rate than the intracardiac values.
摘要:
Implantable medical device with an impedance determination unit with constant current/voltage source having current feed terminals connected to electrodes for intracorporal placement which generates measuring current pulses having constant current/voltage, for causing a current through a body via intracorporally placed electrodes, a measuring unit for measuring voltage/current strength of voltage/current fed through body, an impedance value determination unit connected to the current/voltage source and adapted to determine an impedance value for each measuring current pulse, and an impedance measuring control and evaluation unit connected to the impedance determination unit which controls the unit and evaluates a sequence of consecutive impedance values, the impedance determination unit further adapted to determine at least intrathoracic and intracardiac impedance values for same period of time, the intrathoracic values sampled with a lower sampling rate than the intracardiac values.
摘要:
Heart stimulator that stimulates at least a heart's right atrium and ventricle in an atrium asynchronous stimulation mode with an overdrive stimulation rate. Interposes one resynchronization cycle after a sensed atrial event to regain AV synchrony during otherwise asynchronous stimulation mode. Allows for pacing mode that can pace the atrium with an overdrive stimulation rate in dual-chamber asynchronous mode while maintaining the AV synchrony and is called DDI(R)+. In DDI(R)+, pacemaker performs an atrial asynchronous (V synchronous) pacing mode such as DDI or DDI(R). The overdrive stimulation rate (OSR) is either a fixed rate (programmed by the external device) that is thought to be above the underlying intrinsic atrial rate, or is dynamically adjusted according to the measured atrial cycle length to be slightly above intrinsic atrial rate. The overdrive stimulation rate may be based on an intrinsic atrial rate or on hemodynamic need. DDI(R)+ timing may be ventricle-based.
摘要:
Heart stimulator that stimulates at least a heart's right atrium and ventricle in an atrium asynchronous stimulation mode with an overdrive stimulation rate. Interposes one resynchronization cycle after a sensed atrial event to regain AV synchrony during otherwise asynchronous stimulation mode. Allows for pacing mode that can pace the atrium with an overdrive stimulation rate in dual-chamber asynchronous mode while maintaining the AV synchrony and is called DDI(R)+. In DDI(R)+, pacemaker performs an atrial asynchronous (V synchronous) pacing mode such as DDI or DDI(R). The overdrive stimulation rate (OSR) is either a fixed rate (programmed by the external device) that is thought to be above the underlying intrinsic atrial rate, or is dynamically adjusted according to the measured atrial cycle length to be slightly above intrinsic atrial rate. The overdrive stimulation rate may be based on an intrinsic atrial rate or on hemodynamic need. DDI(R)+ timing may be ventricle-based.
摘要:
An implantable medical device comprises at least two sensing channels for receiving sensed first and second location electrical signals originating from two different locations of a heart. A control unit is connected to the sensing channels and is adapted to process sensed electrical signals originating from first and second locations of the heart. The control unit incorporates an adaptive filter compensator adapted to generate an estimate signal for compensating a far-field contribution of the second location signal to the first location signal, thereby generating an output signal representing a near field signal originating from the first location. A gate is connected to the second location sensing channel and is adapted to enable the adaptive filter compensator only if a predetermined signal is sensed via the second location sensing channel.
摘要:
The invention refers to a monitoring device for monitoring and analyzing physiological signals. The monitoring device comprises a transthoracic impedance measurement unit and an evaluation unit connected to the transthoracic impedance measurement unit. The transthoracic impedance measurement unit is adapted to conduct a transthoracic impedance measurement and to generate a transthoracic impedance signal representing a measured transthoracic impedance at consecutive points in time. The evaluation unit being configured to process the transthoracic impedance signal received from the transthoracic impedance measurement unit and to thus generate a respiration signal and to generate therefrom an evaluation signal reflecting at least a diurnal pattern of the respiration rate.
摘要:
The invention refers to a monitoring device for monitoring and analyzing physiological signals. The monitoring device comprises a transthoracic impedance measurement unit and an evaluation unit connected to the transthoracic impedance measurement unit. The transthoracic impedance measurement unit is adapted to conduct a transthoracic impedance measurement and to generate a transthoracic impedance signal representing a measured transthoracic impedance at consecutive points in time. The evaluation unit being configured to process the transthoracic impedance signal received from the transthoracic impedance measurement unit and to thus generate a respiration signal and to generate therefrom an evaluation signal reflecting at least a diurnal pattern of the respiration rate.
摘要:
An apparatus according to the invention for the classification of physiological events has a signal input for the input of a physiological signal representing or constituting a physiological event and a classification unit 1 for classifying the physiological signal on the basis of its signal shape. The classification unit 1 includes a transformation unit 3 which is designed to carry out transformation of the physiological signal in such a way that as the output signal it outputs a number of values representing the physiological signal and based on the transformation; and a probabilistic neural network which is connected to the transformation unit 3 to receive the values and which contains a number of event classes which represent physiological events and which in turn are each represented by a set of comparative values, which probabilistic neural network is adapted on the basis of the comparison of the values with the comparative values to effect an association of the physiological signal represented by the values with one of the event classes.