摘要:
Systems and methods allow for the accurate determination of the terrestrial position of an autonomous vehicle in real time. A first position estimate of the vehicle 102 is derived from satellites of a global positioning system and/or a pseudolite(s). The pseudolite(s) may be used exclusively when the satellites are not in the view of the vehicle. A second position estimate is derived from an inertial reference unit and/or a vehicle odometer. The first and second position estimates are combined and filtered using novel techniques to derive a more accurate third position estimate of the vehicle's position. Accordingly, accurate autonomous navigation of the vehicle can be effectuated using the third position estimate.
摘要:
A vehicle position determination system and method provide accurate vehicle positioning using a global positioning system. Spatial bias techniques are used to improve positioning accuracy while the vehicle is in the midst of a relatively linear path and is not approaching a drastically nonlinear path. The use of spatial bias techniques is suspended while the vehicle is approaching or in a drastically nonlinear path.
摘要:
Systems and methods allow for the accurate determination of the terrestrial position of an autonomous vehicle in real time. A first position estimate of the vehicle 102 is derived from satellites of a global positioning system and/or a pseudolite(s). The pseudolite(s) may be used exclusively when the satellites are not in the view of the vehicle. A second position estimate is derived from an inertial reference unit and/or a vehicle odometer. The first and second position estimates are combined and filtered using novel techniques to derive a more accurate third position estimate of the vehicle's position. Accordingly, accurate autonomous navigation of the vehicle can be effectuated using the third position estimate.
摘要:
Systems and methods allow for the accurate determination of the terrestrial position of an autonomous vehicle in real time. A first position estimate of the vehicle 102 is derived from satellites of a global positioning system and/or a pseudolite(s). The pseudolite(s) may be used exclusively when the satellites are not in the view of the vehicle. A second position estimate is derived from an inertial reference unit and/or a vehicle odometer. The first and second position estimates are combined and filtered using novel techniques to derive a more accurate third position estimate of the vehicle's position. Accordingly, accurate autonomous navigation of the vehicle can be effectuated using the third position estimate.
摘要:
Systems and methods allow for the accurate determination of the terrestrial position of an autonomous vehicle in real time. A first position estimate of the vehicle 102 is derived from satellites of a global positioning system and/or a pseudolite(s). The pseudolite(s) may be used exclusively when the satellites are not in the view of the vehicle. A second position estimate is derived from an inertial reference unit and/or a vehicle odometer. The first and second position estimates are combined and filtered using novel techniques to derive a more accurate third position estimate of the vehicle's position. Accordingly, accurate autonomous navigation of the vehicle can be effectuated using the third position estimate.
摘要:
A system and method for controlling the navigation of surface based vehicle uses a route that is obtained by manually driving the vehicle over the route to collect data defining the absolute position of the vehicle at various positions along the route. The collected data is smoothed to provide a consistent route to be followed. The smoothed data is subsequently used to automatically guide the vehicle over the route.
摘要:
An apparatus and method for controlling a surface-based vehicle provides three operational modes: a manual operation, a tele-operation, and an autonomous operation. In manual operation, an operator directly manipulates vehicle controls on the vehicle. In tele-operation, the operator controls the vehicle from a remote position. In autonomous operation, the vehicle controls itself based on its position and a predetermined path. The apparatus and method of the present invention provides an orderly transition between manual operation, tele-operation, and autonomous operation of the vehicle.
摘要:
A system and method for controlling an autonomously navigated vehicle uses a vehicle manager to control vehicle subsystems and to respond to commands from either a vehicle navigation system or a remote control panel. The vehicle manager controls vehicle subsystems including a speed control subsystem, a steering control subsystem, an auxiliary control subsystem, and a monitor subsystem. The speed control subsystem controls the speed of the vehicle in response to a speed command from the vehicle manager. The steering control subsystem controls the steering angle of the vehicle in response to a steering command from the vehicle manager. The auxiliary control subsystem controls auxiliary functions of the vehicle in response to an auxiliary command from the vehicle manager. The monitor subsystem monitors the status of each of the other subsystems and provides the status to the vehicle manager.
摘要:
A system (400) for positioning and navigating an autonomous vehicle (310) allows the vehicle (310) to travel between locations. Position information (432) is derived from global positioning system satellites (200, 202, 204, and 206) or other sources (624) when the satellites (200, 202, 204, and 206) are not in the view of the vehicle (310). Navigation of the vehicle (310) is obtained using the position information (432), route information (414), obstacle detection and avoidance data (416), and on board vehicle data (908 and 910).
摘要:
A system (400) for positioning and navigating an autonomous vehicle (310) allows the vehicle (310) to travel between locations. Position information (432) is derived from global positioning system satellites (200, 202, 204, and 206) or other sources (624) when the satellites (200, 202, 204, and 206) are not in the view of the vehicle (310). Navigation of the vehicle (310) is obtained using the position information (432), route information (414), obstacle detection and avoidance data (416), and on board vehicle data (908 and 910).