摘要:
Disclosed is a combined process for hydrotreating and catalytic cracking of residue, wherein the residue, catalytic cracking heavy cycle oil with acidic solid impurity being removed, optional distillate oil and adistillate of catalytic cracking slurry oil from which the acidic solid impurity is removed are fed into residue hydrotreating unit, the hydrogenated residue obtained and optional vacuum gas oil are fed into catalytic cracking unit to obtain various products; the catalytic cracking heavy cycle oil from which the acidic solid impurity is removed is circulated to the residue hydrotreating unit; the catalytic cracking slurry oil is separated by distilling, the distillate of the catalytic cracking slurry oil after removing off the acidic solid impurity is circulated to the residue hydrotreating unit. This process makes the residue hydrotreating and catalytic cracking being combined together more effectively such that it is not only able to improve product quality of the residue hydrotreating, elongate operation cycle of the residue hydrotreating unit, but also increases the yield of the hydrogenated diesel oil and catalytic cracking light oil, and decreases coking quantity of the catalytic cracking.
摘要:
Disclosed is a combined process for hydrotreating and catalytic cracking of residue, wherein the residue, catalytic cracking heavy cycle oil with acidic solid impurity being removed, optional distillate oil and adistillate of catalytic cracking slurry oil from which the acidic solid impurity is removed are fed into residue hydrotreating unit, the hydrogenated residue obtained and optional vacuum gas oil are fed into catalytic cracking unit to obtain various products; the catalytic cracking heavy cycle oil from which the acidic solid impurity is removed is circulated to the residue hydrotreating unit; the catalytic cracking slurry oil is separated by distilling, the distillate of the catalytic cracking slurry oil after removing off the acidic solid impurity is circulated to the residue hydrotreating unit. This process makes the residue hydrotreating and catalytic cracking being combined together more effectively such that it is not only able to improve product quality of the residue hydrotreating, elongate operation cycle of the residue hydrotreating unit, but also increases the yield of the hydrogenated diesel oil and catalytic cracking light oil, and decreases coking quantity of the catalytic cracking.
摘要:
Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain hydrogenated tail oil and other products; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions prior to contacting the hydrogenated tail oil and/or normal catalytic cracking feedstock oil with the cracking catalyst.
摘要:
Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain gas, hydrogenated naphtha, hydrogenated diesel oil, and hydrogenated tail oil; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products to obtain dry gas, hydrogenated naphtha, liquefied petroleum gas, catalytic cracked gasoline, catalytic cracked diesel oil, and catalytic cracking cycle oil; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions, the light and the heavy fractions or normal catalytic cracking heavy feedstock oil and normal catalytic cracking light feedstock oil, prior to contacting the hydrogenated tail oil and/or normal catalytic cracking feedstock oil with the cracking catalyst. The process according to the present invention is especially suitable for conversion of hydrocarbon oils to produce more products of gasoline or diesel oil.
摘要:
Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain hydrogenated tail oil and other products; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions prior to contacting the hydrogenated tail oil and/or normal catalytic cracking feedstock oil with the cracking catalyst.
摘要:
Disclosed is a combination process for improved hydrotreating and catalytic cracking of hydrocarbon oils, including: contacting residual oil, catalytic cracking cycle oil, and optional distillate oil with a hydrotreating catalyst under hydrotreating conditions in the presence of hydrogen followed by separation of the reaction products to obtain gas, hydrogenated naphtha, hydrogenated diesel oil, and hydrogenated tail oil; contacting the hydrogenated tail oil and optional normal catalytic cracking feedstock oil with a cracking catalyst under catalytic cracking conditions followed by separation of the reaction products to obtain dry gas, hydrogenated naphtha, liquefied petroleum gas, catalytic cracked gasoline, catalytic cracked diesel oil, and catalytic cracking cycle oil; wherein the hydrogenated tail oil and/or normal catalytic cracking feedstock oil are separated into at least two fractions, the light and the heavy fractions or normal catalytic cracking heavy feedstock oil and normal catalytic cracking light feedstock oil, prior to contacting the hydrogenated tail oil and/or normal catalytic cracking feedstock oil with the cracking catalyst. The process according to the present invention is especially suitable for conversion of hydrocarbon oils to produce more products of gasoline or diesel oil.
摘要:
A catalytic conversion process to convert inferior feedstock to high quality fuel oil and propylene is disclosed. Inferior feedstock is introduced into first and second reactor zone, wherein first step and second step reactions occur by contacting with catalytic conversion catalyst. Product vapors include fluid catalytic cracking gas oil (FGO) which is introduced into a hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Hydrotreated FGO and/or extracted FGO returns to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics and the raffinate of said FGO is rich in chain alkane and cycloalkane. More particularly, the invention utilizes petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
摘要:
A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h−1 and 100 h−1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
摘要:
A catalytic conversion process which comprises catalytic cracking reaction of a hydrocarbon feedstock contacting with a medium pore size zeolite enriched catalyst in a reactor, characterized in that reaction temperature, weight hourly space velocity and catalyst/feedstock ratio by weight are sufficient to achieve a yield of fluid catalytic cracking gas oil between 12% and 60% by weight of said feedstock, wherein said weight hourly space velocity is between 25 h−1 and 100 h−1, said reaction temperature is between 450° C. and 600° C., and said catalyst/feedstock ratio by weight is between 1 and 30. This invention relates to a catalytic conversion process, especially for heavy feedstock oil to produce higher octane gasoline and an enhanced yield of propylene. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.
摘要:
A catalytic conversion process can convert inferior feedstock to high quality fuel oil and propylene. A inferior feedstock is introduced into first and second reactor zone, wherein the feedstock carry out first step and second step reactions by contacting with catalytic conversion catalyst. Product vapors separate from spent catalyst by gas-solid separation. The spent catalyst is stripped, regenerated by burning off coke and then returns to reactor. The product vapors are introduced into separation system to obtain propylene, gasoline, diesel, fluid catalytic cracking gas oil (FGO) and other products. The FGO is introduced into hydrotreating unit and/or extraction unit to obtain hydrotreated FGO and/or extracted FGO. Said hyrotreated FGO and/or extracted FGO return to the first reactor zone and/or another catalytic cracking unit to obtain propylene and gasoline. The extracted oil of said FGO is rich in double ring aromatics which are good chemical materials. The raffinate of said FGO is rich in chain alkane and cycloalkane which are suitable for catalytic cracking. More particularly, the invention relates to a process to utilize petroleum oil resources efficiently for decreasing the yield of dry gas and coke significantly.