摘要:
Active materials for positive electrodes of rechargeable batteries and the methods of fabrication for the active materials as well as positive electrodes thereof are provided, where the active material comprises of a mixture of two components, A and B. A are compounds of lithium nickel cobalt metal oxide while B are oxides of lithium cobalt. In a preferred embodiment, a formula for the compounds of lithium nickel metal oxide, A, is LiaNi1-b-cCobMcO2 where 0.97≦a≦1.05, 0.01≦b≦0.30, 0≦c≦0.10, and M is one or more of the following: manganese, aluminum, titanium, chromium, magnesium, calcium, vanadium, iron, and zirconium. The weight ratio of A:B is between 20:80 and 80:20.
摘要:
The present invention discloses active materials for the positive electrodes of rechargeable batteries and the methods of fabrication for said active materials as well as positive electrodes thereof. Said active material comprises of a mixture of two components, A and B. A are compounds of lithium nickel cobalt metal oxide while B are oxides of lithium cobalt. In a preferred embodiment, a formula for said compounds of lithium nickel metal oxide, A, is LiaNi1-b-cCobMcO2 where 0.97≦a≦1.05, 0.01≦b≦0.30, 0≦c≦0.10, and M is one or more of the following: manganese, aluminum, titanium, chromium, magnesium, calcium, vanadium, iron, and zirconium. The weight ratio of A:B is between 20:80 and 80:20. Rechargeable batteries with positive electrodes fabricated with the fabrication methods of this invention or with the active materials disclosed in this invention, exhibit excellent overall and electrochemical properties with no formation of halite magnetic domains. They have high discharge capacities, high discharge energies, long cycle lives, and excellent large discharge current characteristics.
摘要翻译:本发明公开了用于可再充电电池的正电极的活性材料以及所述活性材料的制造方法及其正极。 所述活性材料包括两种组分A和B的混合物.A是锂镍钴金属氧化物的化合物,而B是锂钴的氧化物。 在优选的实施方案中,所述锂镍金属氧化物的化合物A的配方为LiaNi1-b-cCobMcO2,其中0.97 <= a <=1.05,0.01≤b≤0.30,0<= c <0.10,和 M是以下一种或多种:锰,铝,钛,铬,镁,钙,钒,铁和锆。 A:B的重量比在20:80到80:20之间。 用本发明的制造方法或本发明公开的活性材料制成的具有正极的可充电电池表现出优异的整体和电化学性质,而不会形成卤盐磁畴。 它们具有高放电容量,高放电能量,较长的循环寿命和优异的大放电电流特性。
摘要:
The present invention discloses positive electrodes and their methods of fabrication. These electrodes are low in cost. Lithium rechargeable batteries that use these positive electrodes have excellent cycling properties at high temperature. The positive electrode of the embodiments of this invention comprises of a current collector coated by two layers of active materials for positive electrodes. The active material for the first layer of coating is one or more active materials selected from the following: spinel lithium manganese oxide, and spinel lithium manganese oxide derivatives. The active material for the second layer of coating is one or more active material selected from the following: lithium cobalt oxide, lithium cobalt oxide derivatives, lithium nickel oxide, and lithium nickel oxide derivatives. To fabricate these positive electrodes, a first layer of coating comprising of the active materials stated above is applied onto a current collector and then dried before a second layer of coating is applied onto the surface of the first layer of coating. The positive electrode is obtained after the current collector with the two layers of coating is dried a second time and then pressed to form a slice.
摘要:
Provided is a composite material having spinel structured lithium titanate, wherein the lithium titanate has a microcrystalline grain diameter of about 36-43 nm and an average particle diameter of about 1-3 μm. The composite material comprises a small amount of TiO2 and Li2—TiO3 impurity phases. Also provided is a method for preparing the composite material, which comprises the steps: mixing titanium dioxide particles and soluble lithium sources with water to form a mixture, removing water and then sintering the mixture in an inert gas at a constant temperature, and cooling the sintered mixture, wherein the titanium dioxide particles have D50 of not greater than 0.4 μm and D95 of less than 1 μm. Further provided are a negative active substance comprising the composite material and a lithium ion secondary battery containing the negative active substance.
摘要:
A solar cell and a backplane for a solar cell, where the backplane comprises a metal substrate having first and second opposing major surfaces, and an insulating layer on at least one major surface of the metal substrate. The insulating layer comprises a resin selected from the group consisting of phenolic resins, epoxy resins, amino resins, and combinations thereof.
摘要:
A battery cathode including a current collector and a cathode material coated on and/or filled in the current collector, said cathode material including a cathode active substance, a conductive additive and an adhesive, wherein said cathode material is coated with a layer of lithium cobaltate on the surface thereof and the content of lithium cobaltate is 0.1-15 wt % (weight percent) based on the weight of the cathode active substance. The lithium ion battery using the cathode provided by the present invention has a higher specific capacity and improved cycling performance.
摘要:
The present invention discloses a method and a device for preparing a compound semiconductor film. The method comprises the steps of: providing a substrate above at least an evaporation source in a vacuum condition; heating a source material contained in the evaporation source so that the source material is vapor-deposited on the substrate; and taking out the substrate under protection of an inert gas. The substrate may be rotated around an axis of a plane where the evaporation source is positioned, and the substrate is tilted by a predetermined angle with respect to the plane. The compound semi-conductive film thus prepared has a uniform thickness with a larger area. The method provides a simplified process and enhanced efficiency.
摘要:
An electrically conductive paste for a solar cell comprises a metal powder, an inorganic adhesive, an aqueous adhesive and an auxiliary agent. The aqueous adhesive comprises a water-soluble polymer.
摘要:
The present invention discloses a method and a device for preparing a compound semiconductor film. The method comprises the steps of: providing a substrate above at least an evaporation source in a vacuum condition; heating a source material contained in the evaporation source so that the source material is vapor-deposited on the substrate; and taking out the substrate under protection of an inert gas. The substrate may be rotated around an axis of a plane where the evaporation source is positioned, and the substrate is tilted by a predetermined angle with respect to the plane. The compound semi-conductive film thus prepared has a uniform thickness with a larger area. The method provides a simplified process and enhanced efficiency.
摘要:
Described is a composite lithium compound having a mixed crystalline structure. Such compound was formed by heating a lithium compound and a metal compound together. The resulting mixed metal crystal exhibits superior electrical property and is a better cathode material for lithium secondary batteries.