Abstract:
A method for capturing an image data from a frame buffer of a computer system takes advantage of a system management interrupt service optionally triggered. If a storage unit functions normally when the computer system fails to work normally, store the image data in the frame buffer into the storage unit. Otherwise, temporarily store the image data in a buffer unit, and then store it in a NVRAM. Then restart the storage unit and restore the image data in the buffer unit into the storage unit. At last, restart the computer system.
Abstract:
A power saving method and system thereof is disclosed. When the central processing unit is under a non-snooping sleep state and a peripheral device sends a bus master request, a chip will drive the central processing unit waking from the non-snooping sleep state and entering a system management mode for executing an interrupt service routine that makes the central processing unit in halt status. The central processing unit is then driven to enter a snooping sleep state for snooping the bus master request. After the execution of the bus master request, the chip will drive the central processing unit to leave the snooping sleep state and return to the non-snooping sleep state for power consumption conservation.
Abstract:
A debugging device and method are provided, including a central processing unit (CPU) connected to a chipset with a system management interrupt pin. The debugging method includes sending out a system management interrupt signal to central processing unit from the system management interrupt pin of the chipset. Then the CPU moves into a system management mode and pops out a debugging operation window for selecting and executing each debugging item. After the execution of each debugging item is completed, the CPU will leave the debugging operation window and return to the next instruction before debugging. After the execution of each debugging item is completed in the debugging operation window, the CPU will return to the operation system and continue the execution of next instruction before debugging. The execution of debugging will not influence the status and the program execution from the operating system. The disclosed debugging method is convenient for executing each debugging item at any time.
Abstract:
A method for accessing a memory of a computer system for BIOS codes optionally performs a detection procedure to realize a maximum memory burst read size of the memory according to a flag value upon the computer system is initialized. For example, the detection procedure is performed when the flag value is logic “1” and the detection procedure is not performed when the flag value is logic “0”. When the detection procedure is performed, read requests with sequentially reduced memory burst read sizes are asserted to the memory one by one until the maximum memory burst read size of the memory is realized. Then, the BIOS codes are read from the memory with the maximum memory burst read size.
Abstract:
A debugging device and method are provided, including a central processing unit (CPU) connected to a chipset with a system management interrupt pin. The debugging method includes sending out a system management interrupt signal to central processing unit from the system management interrupt pin of the chipset. Then the CPU moves into a system management mode and pops out a debugging operation window for selecting and executing each debugging item. After the execution of each debugging item is completed, the CPU will leave the debugging operation window and return to the next instruction before debugging. After the execution of each debugging item is completed in the debugging operation window, the CPU will return to the operation system and continue the execution of next instruction before debugging. The execution of debugging will not influence the status and the program execution from the operating system. The disclosed debugging method is convenient for executing each debugging item at any time.
Abstract:
A device information management system comprises an application device and a BIOS ROM. The BIOS ROM comprises at least one specific region storing device information for the application device. The specific region is not used by a BIOS and not within a calculation range for checksum calculation. The BIOS ROM further comprises an index recording an address of the specific region. The application device reads the index from the BIOS ROM, and reads the device information from the specific region according to the index.
Abstract:
A computer system and a power-management method thereof are provided. The computer system has an image-reading mode, a first power-management mode and a second power-management mode, and the computer system operating in the second power-management mode consumes less power than it consumes in the first power-management mode. The computer system comprises a first portion comprising a graphics processing unit, a memory space and a display; and a second portion comprising a storage storing an image data. When the computer system operates in the image-reading mode, the image data has been transferred to the memory space from the storage, the second portion enters to the second power-management mode from the first power-management mode, and the first portion keeps in the first power-management mode, so that the graphics processing unit can display an image by the display according to the image data stored in the memory space.
Abstract:
An information access method and a computer system are provided. The computer system includes a system management bus (SMBus), a non-volatile memory, a plurality of hardware devices, a chipset, and a CPU. The hardware devices have a plurality of specific recognition information. The CPU performs a configuration process on the hardware devices through the chipset according to the standard for a SMBus protocol, so as to distribute a plurality of memory spaces in the non-volatile memory to the hardware devices. The hardware devices share the SMBus for accessing the plurality of specific recognition information in the memory spaces.
Abstract:
In a method used for initializing a first bus device and a second bus device sharing a common transmission engine of a bus, a first link of the first bus device and a second link of the second bus device to the common transmission engine are disabled when the computer system is booted. Next, the first link and the second link are enabled in order. Then, a first state updating signal from the first bus device is issued after the first link to the common transmission engine is established. Finally, a second state updating signal from the second bus device is issued after the first state updating signal is received and the second link to the common transmission engine is established.
Abstract:
An apparatus and method of flash ROM management. The apparatus comprises a storage device, a strapping component and a process unit. The storage device stores multiple address records comprising an identity and an address range associated with a flash ROM. The strapping component is configured to output a signal to determine flash ROM type. The process unit receives a memory access request with an access range from the CPU and the signal from the strapping component queries the identity by matching the access range and the address range, and finally executes an LPC 1.1 memory access instruction with the identity and the access range corresponding to the memory cycle.