摘要:
A system and method for reducing density mismatch is disclosed. An embodiment comprises determining a conductor density and an active area density in a high density area and a low density area of a semiconductor device. Dummy material may be added to the low density area in order to raise the conductor density and the active area density, thereby reducing the internal density mismatches between the high density area and the low density area. Additionally, a similar process may be used to reduce external mismatches between different regions on the semiconductor substrate. Once these mismatches have been reduced, empty regions surrounding the different regions may additionally be filled in order to reduce the conductor density mismatch and the active area density mismatches.
摘要:
A system and method for reducing density mismatch is disclosed. An embodiment comprises determining a conductor density and an active area density in a high density area and a low density area of a semiconductor device. Dummy material may be added to the low density area in order to raise the conductor density and the active area density, thereby reducing the internal density mismatches between the high density area and the low density area. Additionally, a similar process may be used to reduce external mismatches between different regions on the semiconductor substrate. Once these mismatches have been reduced, empty regions surrounding the different regions may additionally be filled in order to reduce the conductor density mismatch and the active area density mismatches.
摘要:
Through silicon via (TSV) isolation structures are provided and suppress electrical noise such as may be propagated through a semiconductor substrate when caused by a signal carrying active TSV such as used in 3D integrated circuit packaging. The isolation TSV structures are surrounded by an oxide liner and surrounding dopant impurity regions. The surrounding dopant impurity regions may be P-type dopant impurity regions that are coupled to ground or N-type dopant impurity regions that may advantageously be coupled to VDD. The TSV isolation structure is advantageously disposed between an active, signal carrying TSV and active semiconductor devices and the TSV isolation structures may be formed in an array that isolates an active, signal carrying TSV structure from active semiconductor devices.
摘要:
A method of generating an optimized layout of semiconductor components in conformance with a set of design rules includes generating, for a unit cell including one or more semiconductor components, a plurality of configurations each of which satisfies some, but not all, of the design rules. For each configuration, it is checked whether a layout, which is a repeating pattern of the unit cell, satisfies the remaining design rules. Among the configurations which satisfy all of the design rules, the configuration providing an optimal value of a property is selected for generating the optimized layout of the semiconductor components.
摘要:
Through silicon via (TSV) isolation structures are provided and suppress electrical noise such as may be propagated through a semiconductor substrate when caused by a signal carrying active TSV such as used in 3D integrated circuit packaging. The isolation TSV structures are surrounded by an oxide liner and surrounding dopant impurity regions. The surrounding dopant impurity regions may be P-type dopant impurity regions that are coupled to ground or N-type dopant impurity regions that may advantageously be coupled to VDD. The TSV isolation structure is advantageously disposed between an active, signal carrying TSV and active semiconductor devices and the TSV isolation structures may be formed in an array that isolates an active, signal carrying TSV structure from active semiconductor devices.
摘要:
A method for verifying that acceptable device feature gradients and device feature disparities are present in a semiconductor device layout, is provided. The method provides for dividing a device layout into a plurality of windows and measuring or otherwise determining the device feature density within each window. The device layout includes various device regions and the method provides for comparing an average device feature density within one region to surrounding areas or other regions and also for determining gradients of device feature densities. The gradients may be monitored from within a particular device region to surrounding regions. Instructions for carrying out the method may be stored on a computer readable storage medium and executed by a processor.
摘要:
A method for verifying that acceptable device feature gradients and device feature disparities are present in a semiconductor device layout, is provided. The method provides for dividing a device layout into a plurality of windows and measuring or otherwise determining the device feature density within each window. The device layout includes various device regions and the method provides for comparing an average device feature density within one region to surrounding areas or other regions and also for determining gradients of device feature densities. The gradients may be monitored from within a particular device region to surrounding regions. Instructions for carrying out the method may be stored on a computer readable storage medium and executed by a processor.
摘要:
A method for verifying that acceptable device feature gradients and device feature disparities are present in a semiconductor device layout, is provided. The method provides for dividing a device layout into a plurality of windows and measuring or otherwise determining the device feature density within each window. The device layout includes various device regions and the method provides for comparing an average device feature density within one region to surrounding areas or other regions and also for determining gradients of device feature densities. The gradients may be monitored from within a particular device region to surrounding regions. Instructions for carrying out the method may be stored on a computer readable storage medium and executed by a processor.
摘要:
An integrated circuit includes a signal line routed in a first direction. A first shielding pattern is disposed substantially parallel with the signal line. The first shielding pattern has a first edge having a first dimension and a second edge having a second dimension. The first edge is substantially parallel with the signal line. The first dimension is larger than the second dimension. A second shielding pattern is disposed substantially parallel with the signal line. The second shielding pattern has a third edge having a third dimension and a fourth edge having a fourth dimension. The third edge is substantially parallel with the signal line. The third dimension is larger than the fourth dimension. The fourth edge faces the second edge. A first space is between the second and fourth edges.
摘要:
An integrated circuit includes a semiconductor substrate; a first node; a second node; and a first plurality of resistors, each in a first plurality of resistor units. Each of the first plurality of resistor units includes a first end connected to the first node, and a second end connected to the second node. The integrated circuit further includes a second plurality of resistors, each in a second plurality of resistor units. Each of the second plurality of resistor units includes a first end connected to the first node, and a second end connected to the second node. The first plurality of resistors is formed of a first material. The second plurality of resistors is formed of a second material different from the first material. The integrated circuit further includes a switch in one of the first and the second plurality of resistor units and serially connected to a resistor.