Abstract:
The present disclosure describes an example method for cell placement in an integrated circuit (IC) layout design. The method includes defining a layout unit for a circuit implementation and arranging multiple layout units into a layout cell. The method also includes editing the layout cell to connect a first set of the layout units to be representative of the circuit implementation and to connect a second set of the layout units to be representative of a non-functional circuit. Further, the method includes inserting one or more dummy fill structures in areas of the layout cell unoccupied by the first and second sets of layout units.
Abstract:
A built-in self-test (BIST) circuit for a liquid crystal display (LCD) source driver includes at least one digital-to-analog converter (DAC) and at least one buffer coupled to the respective DAC, wherein the buffer is reconfigurable as a comparator. A first input signal and a second input signal are coupled to the comparator. The first input signal is a predetermined reference voltage level. The second input signal is a test offset voltage in a test range.
Abstract:
Systems and methods are disclosed for aligning multiple data bits by adjusting the timing of input lines for those data bits. Embodiments include a hierarchical structure for comparing the timing of multiple sets of bits. Other embodiments include aligning data bits from multiple chips in a 3D die stacking architecture.
Abstract:
A system and method for reducing density mismatch is disclosed. An embodiment comprises determining a conductor density and an active area density in a high density area and a low density area of a semiconductor device. Dummy material may be added to the low density area in order to raise the conductor density and the active area density, thereby reducing the internal density mismatches between the high density area and the low density area. Additionally, a similar process may be used to reduce external mismatches between different regions on the semiconductor substrate. Once these mismatches have been reduced, empty regions surrounding the different regions may additionally be filled in order to reduce the conductor density mismatch and the active area density mismatches.
Abstract:
A system and method for reducing density mismatch is disclosed. An embodiment comprises determining a conductor density and an active area density in a high density area and a low density area of a semiconductor device. Dummy material may be added to the low density area in order to raise the conductor density and the active area density, thereby reducing the internal density mismatches between the high density area and the low density area. Additionally, a similar process may be used to reduce external mismatches between different regions on the semiconductor substrate. Once these mismatches have been reduced, empty regions surrounding the different regions may additionally be filled in order to reduce the conductor density mismatch and the active area density mismatches.
Abstract:
A circuit for reducing phase distortion of a first signal and a second signal is provided, wherein the first and the second signals are complementary. The circuit includes a detecting circuit for detecting a first edge of the first signal and a second edge of the second signal, wherein the second edge immediately follows the first edge and is in a same direction as the first edge; an output node; and a signal regenerator connected to the detecting circuit and the output node. The signal regenerator is configured to generate an output signal having an additional first edge and an additional second edge. The additional first edge and the additional second edge are opposite edges substantially aligned to the first edge and the second edge, respectively. The additional first edge and the additional second edge are immediate neighboring edges.
Abstract:
An on-die calibration system includes an external reference component, a first and a second on-die adjustable components, and a calibration module coupled to the reference component, the first and second components, wherein the calibration module calibrates the first component according to the reference component and calibrates the second component according to the calibrated first component.
Abstract:
A wide-range and low power consumption voltage-controlled oscillator according to the invention includes a logic control circuit, a parallel series controllable inverter bank and a voltage control load. The logic control circuit consists of a plurality of logic gates for receiving a selecting signal from an external device and then transmitting a control signal. The parallel series controllable inverter bank consists of a plurality of series controllable inverter banks electrically connected in parallel for receiving the control signal and outputting an oscillation signal, wherein the control signal is used to control the number of the series controllable inverter banks electrically connected in parallel. The voltage control load is electrically connected between the parallel series controllable inverter bank and ground for serving as a load of the parallel series controllable inverter bank.
Abstract:
A system and method is disclosed for adaptively adjusting a driving strength of a signal between a first and second chip in a 3D architecture/stack. This may be used to adaptively calibrate a chip in a 3D architecture/stack. The system may include a transmission circuit on one chip and a receiver circuit on another chip. Alternatively, the system may include a transmission and receiver circuit on just one chip.
Abstract:
A built-in self-test (BIST) circuit for a liquid crystal display (LCD) source driver includes at least one digital-to-analog converter (DAC) and at least one buffer coupled to the respective DAC, wherein the buffer is reconfigurable as a comparator. A first input signal and a second input signal are coupled to the comparator. The first input signal is a predetermined reference voltage level. The second input signal is a test offset voltage in a test range.