Abstract:
There is provided a process for reacting a 2-arylethanol, such as 2-phenethanol, with an aromatic compound, such as toluene, to produce a 1,2-diarylethane, such as 2-phenethyltoluene. The reaction involves the use of a catalyst comprising an acidic solid oxide, such as ZSM-5, zeolite Beta, MCM-22 or ZSM-12.
Abstract:
This invention relates to a new form of crystalline material identified as zeolite ZSM-5-type, to a new and useful method for synthesizing said crystalline material and to use of said crystalline material prepared in accordance herewith as a catalyst for organic compound, e.g. hydrocarbon compound, conversion.
Abstract:
Zeolites (e.g. ZSM-5 and zeolite beta) enriched with hydroxyl groups are prepared by ammonia treatment of sieves which have suffered loss of tetrahedral aluminum from framework positions followed by careful calcination (200.degree.-450.degree. C.). The hydroxyl group created by this method are stable only to 500.degree. C.
Abstract:
A catalyzed conversion of diethylene glycol to 1,4-dioxane, undertaken over zeolites, ZSM-5, ZSM-23, ZSM-48 and zeolite beta, is characterized by high selectivity.
Abstract:
A process for converting at least one olefin and at least one isoparaffin to a diesel fuel blending component comprising the steps of contacting the olefin and the isoparaffin with a catalyst comprising an acidic solid comprising a Group IVB metal oxide modified with an oxyanion of a Group VIB metal to provide a diesel fuel. Process conditions can be varied to favor the formation of gasoline, distillate, lube range products or mixtures thereof.
Abstract:
This invention relates to a new form of crystalline material identified as mordenite-type, to a new and useful method for synthesizing said crystalline material and to use of said crystalline material prepared in accordance herewith as a catalyst for organic compound, e.g. hydrocarbon compound, conversion.
Abstract:
This invention relates to a new form of crystalline material identified as having the structure of ZSM-35, to a new and useful method for synthesizing said crystalline material using 1,4-diaminocyclohexane as directing agent, and to use of said crystalline material prepared in accordance herewith as a catalyst for organic compound, e.g., hydrocarbon compound, conversion.
Abstract:
The acidity of a zeolite catalyst is reduced by calcination in an essentially water-free atmosphere at temperatures above 700.degree. C., preferably from 725.degree. to 800.degree. C., to reduce the alpha value to less than 10 percent of its original value. The low acidity catalysts produced in this way may be used for conversions requiring low acidity, shape selective catalysis, including conversion of oxygenates to hydrocarbons. The calcined, low acidity catalysts exhibit improved selectivity to certain desired products.
Abstract:
The present invention provides a process for producing a selected paraffin from a reaction mixture containing(i) an acceptor olefin having the carbon backbone structure of said selected paraffin;(ii) a donor paraffin having a carbon backbone structure different from that of said selected paraffin;(iii) less than about 10 mole percent molecular hydrogen; which process comprises the steps of contacting said reaction mixture with a heterogeneous catalyst comprising active carbon in the absence of an added catalytic metal or metal compound to convert at least a portion of said acceptor olefin to said selected paraffin and to dehydrogenate at least a portion of said donor paraffin.