Abstract:
Methods and compositions are provided for preparation of thermoplastic gels. The compositions have a base composition including a thermoplastic gel and a softener oil and the gel has a hardness between 15 Shore 000 and 65 Shore 000. The gel may also include an additive, such as a mineral filler, an anti-tack agent, and a mixture of a mineral filler and an anti-tack agent. The softener oil may be a high molecular weight oil having a molecular weight greater than about 250 g/mol.
Abstract:
Methods, compositions, apparatuses, and systems are provided for a hybrid thermoplastic gel or sealant. The methods comprise providing (a) a base polymer having at least one functional group capable of crosslinking, (b) a functionalized extender, and (c) heat, and reacting the base polymer and functionalized extender in the presence of the heat to form the hybrid thermoplastic gel. The gel composition may comprise 5-40 wt % of a base polymer, 60-95 wt % of a functionalized extender, and 0-10 wt % of a crosslinker. A closure or interconnect system may comprise a housing, a cable, and a hybrid thermoplastic gel or sealant. A telecommunications apparatus may comprise a telecommunications component and a sealant that forms a seal with the telecommunications component. The sealant may comprise a sealant material having a first range of elongation followed by a second range of elongation.
Abstract:
A method for securing a fiber optic component includes: providing a holding medium having a tack and mounted on a substrate; and placing the fiber optic component in intimate contact with the holding medium to thereby secure the fiber optic component to the substrate. The tack of the holding medium releasably bonds the fiber optic component to the holding medium and the holding medium retains its tack upon removal of the fiber optic component to permit re-placement of the fiber optic component or placement of a further fiber optic component on the holding medium to secure said fiber optic component or further fiber optic component to the substrate.
Abstract:
Methods and systems are provided for a dry silicone gel. The dry silicone gel comprises a base polymer having a vinylsilicone group, a crosslinker, and a chain extender. The dry silicone gel may be made by reacting (a) a first set of components comprising a base polymer having a vinylsilicone group and an addition cure catalyst with (b) a second set of components comprising a crosslinker, a chain extender, and additional base polymer. In certain circumstances, the base polymer and additional base polymer are vinyl-terminated polydimethylsiloxane.
Abstract:
A telecommunications enclosure is provided with reliable sealing around cables entering therein. The enclosure includes one or more cable ports with cable seals made from a material that includes an oil-bleed silicone rubber. The cable ports may also have a convoluted or serrated inner surface configured to engage and support the cable seals.
Abstract:
Methods, compositions, apparatuses, and systems are provided for a hybrid thermoplastic gel or sealant. The methods comprise providing (a) a base polymer having at least one functional group capable of crosslinking, (b) a functionalized extender, and (c) heat, and reacting the base polymer and functionalized extender in the presence of the heat to form the hybrid thermoplastic gel. The gel composition may comprise 5-40 wt % of a base polymer, 60-95 wt % of a functionalized extender, and 0-10 wt % of a crosslinker. A closure or interconnect system may comprise a housing, a cable, and a hybrid thermoplastic gel or sealant. A telecommunications apparatus may comprise a telecommunications component and a sealant that forms a seal with the telecommunications component. The sealant may comprise a sealant material having a first range of elongation followed by a second range of elongation.
Abstract:
Methods and systems are provided for a dry silicone gel. The dry silicone gel comprises a base polymer having a vinyl-silicone group, a crosslinker, and a chain extender. The dry silicone gel may be made by reacting (a) a first set of components comprising a base polymer having a vinyl-silicone group and an addition cure catalyst with (b) a second set of components comprising a crosslinker, a chain extender, and additional base polymer. In certain circumstances, the base polymer and additional base polymer are vinyl-terminated polydimethylsiloxane.
Abstract:
Methods and compositions are provided for preparation of thermoplastic gels. The compositions have a base composition including a thermoplastic gel and a softener oil and the gel has a hardness between 15 Shore 000 and 65 Shore 000. The gel may also include an additive, such as a mineral filler, an anti-tack agent, and a mixture of a mineral filler and an anti-tack agent. The softener oil may be a high molecular weight oil having a molecular weight greater than about 250 g/mol.
Abstract:
Aspects of the present disclosure relates to an indexing terminal including a multi-fiber ruggedized de-mateable connection location, a first single-fiber ruggedized de-mateable connection location and a second single-fiber ruggedized de-mateable connection location. The multi-fiber ruggedized de-mateable connection location includes a plurality of fiber positions with one of the fiber positions optically coupled to the first single fiber ruggedized de-mateable connection location.
Abstract:
A telecommunications enclosure is provided with reliable sealing around cables entering therein. The enclosure includes one or more cable ports with cable seals made from a material that includes an oil-bleed silicone rubber. The cable ports may also have a convoluted or serrated inner surface configured to engage and support the cable seals.