Abstract:
Various embodiments disclosed relate to a method for bending a glass substrate. The method includes actuating at least one heat shield to a first position at least partially covering an edge portion of a first major surface of the glass substrate. The method further includes heating the glass substrate. The method further includes actuating the at least one heat shield to a second position at least partially uncovering the edge portion of the glass substrate.
Abstract:
Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.
Abstract:
Disclosed herein are glass articles coated on at least one surface with an electrochromic layer and comprising minimal regions of laser damage, and methods for laser processing such glass articles. Insulated glass units comprising such coated glass articles are also disclosed herein.
Abstract:
Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.
Abstract:
Processes and devices by which a brittle material substrate may be edge formed and finished to simultaneously remove corresponding damage remaining on the edges in the areas formed by cutting and separation while imposing a desired edge profile and achieving a desired mechanical edge strength. Processes of the present disclosure may include a chemical and mechanical brush polishing process configured to shape and/or polish a surface of one or more thin substrates. A plurality of substrates may be arranged in a stacked configuration, and engineered interposer devices may be arranged between the stacked substrates. The interposers may provide between the substrates and may direct filament placement during brushing so as to guide material removal on the substrate edges. Substrate edge profile shapes, including symmetric and asymmetric profiles, may be formed by strategic manipulation of interposer properties including dimensions, mechanical features, material properties, and positioning.
Abstract:
Disclosed herein are glass articles coated on at least one surface with an electrochromic layer and comprising minimal regions of laser damage, and methods for laser processing such glass articles. Insulated glass units comprising such coated glass articles are also disclosed herein.
Abstract:
Various embodiments disclosed relate to a method for bending a glass substrate. The method includes actuating at least one heat shield to a first position at least partially covering an edge portion of a first major surface of the glass substrate. The method further includes heating the glass substrate. The method further includes actuating the at least one heat shield to a second position at least partially uncovering the edge portion of the glass substrate.
Abstract:
Systems and methods for laser-cutting thermally tempered substrates are disclosed. In one embodiment, a method of separating a thermally tempered substrate includes directing a laser beam focal line such that at least a portion of the laser beam focal line is within a bulk of the thermally tempered substrate. The focused pulsed laser beam is pulsed to form a sequence of pulse bursts comprising one or more sub-pulses. The laser beam focal line produces a damage track within the bulk of the tempered substrate along the laser beam focal line. Relative motion is provided between the focused pulsed laser beam and the tempered substrate such that the pulsed laser beam forms a sequence of damage tracks within the tempered substrate. Individual damage tracks of the sequence of damage tracks are separated by a lateral spacing, and one or more microcracks connect adjacent damage tracks of the sequence of damage tracks.