摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
Known techniques to improve metal-oxide-semiconductor field effect transistor (MOSFET) performance is to add a high stress dielectric layer to the MOSFET. The high stress dielectric layer introduces stress in the MOSFET that causes electron mobility drive current to increase. This technique increases process complexity, however, and can degrade PMOS performance. Embodiments of the present invention create dislocation loops in the MOSFET substrate to introduce stress and implants nitrogen in the substrate to control the growth of the dislocation loops so that the stress remains beneath the channel of the MOSFET.
摘要:
Complementary metal oxide semiconductor transistors are formed on a silicon substrate. The substrate has a {100} crystallographic orientation. The transistors are formed on the substrate so that current flows in the channels of the transistors are parallel to the direction. Additionally, longitudinal tensile stress is applied to the channels.
摘要:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.
摘要:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.
摘要:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.
摘要:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.
摘要:
A novel MOS transistor having minimal junction capacitance in this method of fabrication. According to the present invention, a gate dielectric layer is formed on a first surface of the semiconductor substrate. A gate electrode is then formed on the gate dielectric layer. Next, a pair of recesses are formed in the semiconductor substrate on opposite sides of the gate electrode. A dielectric layer is then formed on the surface of each of the recesses. A Semiconductor material is then deposited into the recesses to form a pair of source/drain regions.
摘要:
A novel MOS transistor having minimal junction capacitance in this method of fabrication. According to the present invention, a gate dielectric layer is formed on a first surface of the semiconductor substrate. A gate electrode is then formed on the gate dielectric layer. Next, a pair of recesses are formed in the semiconductor substrate on opposite sides of the gate electrode. A dielectric layer is then formed on the surface of each of the recesses. A Semiconductor material is then deposited into the recesses to form a pair of source/drain regions.
摘要:
Microelectronic structures embodying the present invention include a field effect transistor (FET) having highly conductive source/drain extensions. Formation of such highly conductive source/drain extensions includes forming a passivated recess which is back filled by epitaxial deposition of doped material to form the source/drain junctions. The recesses include a laterally extending region that underlies a portion of the gate structure. Such a lateral extension may underlie a sidewall spacer adjacent to the vertical sidewalls of the gate electrode, or may extend further into the channel portion of a FET such that the lateral recess underlies the gate electrode portion of the gate structure. In one embodiment the recess is back filled by an in-situ epitaxial deposition of a bilayer of oppositely doped material. In this way, a very abrupt junction is achieved that provides a relatively low resistance source/drain extension and further provides good off-state subthreshold leakage characteristics. Alternative embodiments can be implemented with a back filled recess of a single conductivity type.