Abstract:
Embodiments provide systems and methods for displaying a fluid responsiveness predictor (FRP) based on an analysis a physiological signal detected by a physiological sensor applied to a patient. A method may include detecting the signal of the patient with the physiological sensor, determining an FRP with a FRP determination module, wherein the determining operation comprises analyzing at least one characteristic of the physiological signal over time to determine the FRP, receiving a report request to report the FRP at a requested time through a user interface, generating a reported FRP in relation to the requested time using the FRP determination module, and displaying the reported FRP on a display. The displaying operation may include displaying the FRP using at least one graphic representation.
Abstract:
The present invention relates to physiological signal processing, and in particular to methods and systems for processing physiological signals to predict a fluid responsiveness of a patient. A medical monitor for monitoring a patient includes an input receiving a photoplethysmograph (PPG) signal representing light absorption by a patient's tissue. The monitor also includes a perfusion status indicator indicating a perfusion status of the PPG signal, and a fluid responsiveness predictor (FRP) calculator programmed to calculate an FRP value based on a respiratory variation of the PPG signal. The FRP calculator applies a correction factor based on the perfusion status indicator.
Abstract:
The present invention relates to the field of medical monitoring, and in particular non-contact, video-based monitoring of pulse rate, respiration rate, motion, and oxygen saturation. Systems and methods are described for capturing images of a patient, producing intensity signals from the images, filtering those signals to focus on a physiologic component, and measuring a vital sign from the filtered signals. Examples include flood fill methods and skin tone filtering methods.
Abstract:
A method for reducing alarm fatigue, specifically, combining multiple physiological parameters, such as heart rate and respiratory rate, into one index number indicative of the patient's condition. The method includes detecting the severity of the patient's condition, generating, and displaying a scaled version of that index number relative to the severity of the patient's condition. The scaled index number is displayed on a patient monitor device. The scaled index number may have a size and color value.
Abstract:
A physiological monitoring system may determine a probe-off condition. A physiological sensor may receive a light signal including one or more wavelengths of light. The received light signal may be processed to obtain a light signal corresponding to an ambient light signal and a light signal corresponding to an emitted light signal and the ambient light signal. The signals may be analyzed to identify an inverse effect. The system may determine whether the physiological sensor is properly positioned based on the identification of an inverse effect.
Abstract:
A PPG system for determining a stroke volume of a patient includes a PPG sensor configured to be secured to an anatomical portion of the patient. The PPG sensor is configured to sense a physiological characteristic of the patient. The PPG system may include a monitor operatively connected to the PPG sensor. The monitor receives a PPG signal from the PPG sensor. The monitor includes a pulse trending module determining a slope transit time of an upslope of a primary peak of the PPG signal. The pulse trending module determines a stroke volume of the patient as a function of the slope transit time.
Abstract:
A sound signal from a patient may include information that may be used to determine multiple patient parameters. A patient monitor may determine respiration information such as respiration rate from the sound signal, for example based on modulations of the sound signal due to patient breathing. The patient monitor may also determine indications of patient distress based on a trained classifier, speech commands, or sound patterns.
Abstract:
A system is configured to determine a fluid responsiveness index of a patient from a physiological signal. The system may include a sensor configured to be secured to an anatomical portion of the patient, and a monitor operatively connected to the sensor. The sensor is configured to sense a physiological characteristic of the patient. The monitor is configured to receive a physiological signal from the sensor. The monitor may include an index-determining module configured to determine the fluid responsiveness index through formation of a ratio of one or both of amplitude or frequency modulation of the physiological signal to baseline modulation of the physiological signal.
Abstract:
A sound signal from a patient may include information that may be used to determine multiple patient parameters. A patient monitor may determine respiration information such as respiration rate from the sound signal, for example based on modulations of the sound signal due to patient breathing. The patient monitor may also determine indications of patient distress based on a trained classifier, speech commands, or sound patterns.
Abstract:
A physiological monitoring system may use photonic signals at one or more wavelengths to determine physiological parameters. The system may receive a photoplethysmograph signal, and generated a difference signal based on the photoplethysmograph signal. The system may specify a segment of the photoplethysmograph signal and a segment of the difference signal. The system may associate each value of the segment of the photoplethysmograph signal to a corresponding value of the segment of the difference signal to generate associated value pairs. The system may compare the associated value pairs to a reference characteristic, and determine a signal quality metric based on the comparison.