Abstract:
Described herein are LED chips incorporating self-aligned floating mirror layers that can be configured with contact vias. These mirror layers can be utilized to reduce dim areas seen around the contact vias due to underlying material layers without the need for the mirror layer to be designed at some tolerance distance from the electrical via. This increases mirror area, eliminating lower light reflection in the proximity of the via and producing higher light output with greater light emission uniformity. In some embodiments, the mirror layer is formed with a contact via. This allows for a self-aligning process and results in the mirror layer extending substantially from the edge of the via.
Abstract:
Described herein are LED chips incorporating self-aligned floating mirror layers that can be configured with contact vias. These mirror layers can be utilized to reduce dim areas seen around the contact vias due to underlying material layers without the need for the mirror layer to be designed at some tolerance distance from the electrical via. This increases mirror area, eliminating lower light reflection in the proximity of the via and producing higher light output with greater light emission uniformity. In some embodiments, the mirror layer is formed with a contact via. This allows for a self-aligning process and results in the mirror layer extending substantially from the edge of the via.
Abstract:
Described herein are LED chips incorporating self-aligned floating mirror layers that can be configured with contact vias. These mirror layers can be utilized to reduce dim areas seen around the contact vias due to underlying material layers without the need for the mirror layer to be designed at some tolerance distance from the electrical via. This increases mirror area, eliminating lower light reflection in the proximity of the via and producing higher light output with greater light emission uniformity. In some embodiments, the mirror layer is formed with a contact via. This allows for a self-aligning process and results in the mirror layer extending substantially from the edge of the via.
Abstract:
Monolithic LED chips are disclosed comprising a plurality of active regions on a submount, wherein the submount comprises integral electrically conductive interconnect elements in electrical contact with the active regions and electrically connecting at least some of the active regions in series. The submount also comprises an integral insulator element electrically insulating at least some of the interconnect elements and active regions from other elements of the submount. The active regions are mounted in close proximity to one another to minimize the visibility of the space during operation. The LED chips can also comprise layers structures and compositions that allow improved reliability under high current operation.