Abstract:
A control module is arranged in alignment with a battery module in a longitudinal direction. The control module includes a busbar, a switch and a current sensor configured to detect electric current flowing through the busbar. The current sensor includes a magneto-electric transducer and a magnetic field suppressor. The magneto-electric transducer is configured to convert a magnetic field, which depends on the electric current flowing through the busbar and passes through the magneto-electric transducer along a plane perpendicular to a height direction, into an electrical signal. The magnetic field suppressor is configured to suppress external magnetic fields from passing through the magneto-electric transducer along the plane perpendicular to the height direction. The switch includes a pair of magnets that are magnetized and opposed to each other in a lateral direction perpendicular to both the longitudinal and height directions. The current sensor is aligned with the magnets in the longitudinal direction.
Abstract:
A control module is arranged in alignment with a battery module in a longitudinal direction. The battery module includes battery cells that are aligned in the longitudinal direction and each have upper and lower end faces opposite to each other in a height direction perpendicular to the longitudinal direction. The control module includes a busbar configured to electrically connect the battery module to an electrical load, a switch configured to switch electrical connection of the busbar with the electrical load between a connected state and a disconnected state, and a controller that controls the switch. In the height direction, the busbar is located closer to the upper end faces of the battery cells than to the lower end faces; the controller is located closer to the lower end faces of the battery cells than to the upper end faces; and the switch is located between the busbar and the controller.
Abstract:
A monitoring system is applied to an electrical system, which includes a DC power source and an electrical apparatus that is connected to the DC power source by a pair of electric power leads incorporating respective switches. To detect leakage current from the DC power source, a low-frequency AC signal is applied via a large-capacitance capacitor to a specific connection position, between a first terminal of the DC power source and the corresponding switch, and the resultant voltage of that signal is measured. To detect a short-circuit failure of one or both of the switches, a high-frequency AC signal is applied via a low-capacitance capacitor to the specific connection position, and the resultant signal voltage is measured. Judgement as to occurrence of leakage current and/or short-circuit failure is based on the measured signal voltage values.
Abstract:
A battery monitoring apparatus includes a first voltage detector provided to a first short circuit connected to a target cell, a second voltage detector connected to the target cell and provided to a second short circuit, a switch forming a closed circuit connected to an assembled battery and including a resistor, a third voltage detector detecting an inter-terminal voltage between positive and negative electrode terminals of the assembled battery, a switch abnormality determination section determining, in a state where the switch is driven in a closing direction, presence or absence of abnormal opening of the switch based on a difference between detection voltages obtained by the first and second voltage detectors, and a disconnection determination section determining, in the state where the switch is driven in the closing direction, presence or absence of disconnection at the assembled battery based on a detection voltage obtained by the third voltage detector.
Abstract:
A voltage-detecting device applied to a battery pack includes a serially connected body of plural battery cells.Serially connected bodies of at least two of the battery cells of the battery pack form detection blocks; each of the respective battery cells of a detection block, or a serially connected body of a number of battery cells in a detection block that is less than the number of the battery cells of the detection block is taken to be a battery for which voltage is to be detected. Monitoring units includes a main voltage-detecting unit for detecting terminal voltage of each of the batteries; a positive-electrode-side input unit electrically connected to the positive-electrode side of a detection block; a negative-electrode-side input unit electrically connected to the negative-electrode side thereof; and sub voltage-detecting units for detecting terminal voltage of the detection blocks as the state of the battery pack.
Abstract:
A failure inspection system includes a main circuit section, an electrically conductive member, capacitors, a signal generating section, a measurement section and a judgement section. The signal generating section generates a high-frequency AC signal and a low-frequency AC signal. The judgement section determines whether either one of two types of failure has occurred based on the voltage or the current of the high-frequency AC signal. If it is determined that a failure is occurring, the judgment section specifies that which of failures, a leakage current failure or a short-circuit failure, the failure that has occurred is, based on a measurement value of the low-frequency AC signal derived from the measurement section.
Abstract:
A fault detection system is provided which includes power lines connecting between a DC power supply and electric equipment, switches respectively provided to the power lines, a capacitor connected to the power lines at a position where a distance to the electric equipment is shorter than a distance between the switches and the electric equipment, a charging unit charging the capacitor before the switches are turned on, a detection section connected to the power line at a connecting point where a distance to the DC power supply is shorter than a distance between the switches and the DC power supply, and detecting a change in an electric potential of the connecting point, and a determination section determining whether a short-circuit fault has occurred in any one of the switches based on a difference in the electric potential of the connecting point between before and after the capacitor is charged.