Abstract:
Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23° C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.
Abstract:
A process for preparing structures of crosslinked silicon oxide which are mesoporous structures wherein, a portion of the materials used in the preparation of the structures are recycled for use in the preparation of additional structures.
Abstract:
Prepare nanofoam by (a) providing an aqueous solution of a flame retardant dissolved in an aqueous solvent, wherein the flame retardant is a solid at 23° C. and 101 kiloPascals pressure when in neat form; (b) providing a fluid polymer composition selected from a solution of polymer dissolved in a water-miscible solvent or a latex of polymer particles in a continuous aqueous phase; (c) mixing the aqueous solution of flame retardant with the fluid polymer composition to form a mixture; (d) removing water and, if present, solvent from the mixture to produce a polymeric composition having less than 74 weight-percent flame retardant based on total polymeric composition weight; (e) compound the polymeric composition with a matrix polymer to form a matrix polymer composition; and (f) foam the matrix polymer composition into nanofoam having a porosity of at least 60 percent.
Abstract:
The present invention provides coated films and packages formed from such films. In one aspect, a coated film comprises (a) a film comprising (i) a first layer comprising from 70 to 100 percent by weight of a polyethylene having a density 0.930 g/cm3 or less and a peak melting point of less than 126° C.; (ii) a second layer comprising from 60 to 100 percent by weight polyethylene having a density of 0.905 to 0.970 g/cm3 and a peak melting point in the range of 100° C. to 135° C.; and (iii) at least one inner layer between the first layer and the second layer comprising from 40 to 100 percent by weight of a polyethylene having a density from 0.930 to 0.970 g/cm3 and a peak melting point in the range of 120° C. to 135° C., wherein the polyethylene is a medium density polyethylene or a high density polyethylene; and (b) a coating on an outer surface of the second layer of the film comprising a crosslinked polyurethane, wherein the coating is substantially free of isocyanate groups. In some embodiments, the coated film is thermally resistant when subjected to a W-fold test at a temperature of at least 230° F., and/or has a gloss of at least 70 units at 60°.
Abstract:
A process comprising: A) contacting one or more of sources of silicon oxide, selected from water sol-uble.silica sources arid alkali metal silicates, with an aqueous reaction medium, comprising one or more nonionic surfactants and thereby forming mesoporous structures comprising crosslinked silicon oxide units, wherein said cross-linked silicon oxide units have pores of about 1 to about 100 nanometers and wherein the aqueous reaction medium exhibits a pH of about 0 to about 4.0; B) exposing the aqueous reaction medium containing the mesoporous structures to elevated temperatures for a time sufficient to achieve the desired structure and pore size. Preferred water soluble silica sources comprise silicic acid, or po!ysilicic acids, The aqueous reaction, medium is prepared by combining one or more nonionic surfactants and water, theteby forming an aqueous, reaction medium. comprising micelles. Preferably, the aqueous reaction medium further comprises, a. micelle swelling agent capable of swelling micelles formed by the surfactant in the aqueous reaction medium. In one embodiment the process forms structures with struts comprised of crosslinked silicon oxides which connect at least some of the pore forming structures.