摘要:
The present disclosure provides embodiments of a composition comprising post-consumer recycled resin comprising: at least 50 weight percent polyolefin, having an initial limonene level of at least 5 ppm; virgin ethylene-based polymer; and at least one odor-active zeolite, wherein the odor-active zeolite has an FAU crystal structure, an MFI crystal structure, and/or a beta crystal structure and a Si/Al molar ratio from 1 to 100, wherein the composition has a reduced limonene level of less than 3 ppm. The present disclosure also provides embodiments of a method of reducing taste and/or odor in a post-consumer recycled (PCR) resin-containing composition.
摘要:
The present invention provides compositions for use as elastomeric roof coatings having excellent infrared (IR) reflectivity which comprise (i) one or more elastomeric copolymer having a measured glass transition temperature (measured Tg) of from −100 to 0° C. and one or more mesoporous filler, preferably a mesoporous filler that is substantially free of organic groups or residues, the mesoporous filler chosen from mesoporous silica, mesoporous aluminosilicates and mesoporous alumina, wherein the composition has a pigment volume concentration (% PVC) of from 0.1 to 15%. Such compositions provide aqueous or solvent borne clearcoats that can go over existing, already painted or colorcoated roof or wall substrates to preserve their finish or appearance.
摘要:
Embodiments of the present disclosure are directed towards methods of etherification including reducing templates of a zeolite catalyst to provide a reduced template zeolite catalyst having from 3 to 15 weight percent weight percent of templates maintained following calcination of zeolite catalyst; and contacting the reduced template zeolite catalyst with an olefin and an alcohol to produce a monoalkyl ether.
摘要:
Provided is a process for preparing a diaryl ether compound through the dehydration of an aromatic alcohol compound in the presence of a dehydration catalyst. The dehydration catalyst is an oxide of a medium rare earth element, wherein the medium rare earth element is samarium, europium, gadolinium, or mixtures thereof.
摘要:
Provided is a process for preparing a diaryl ether compound through the dehydration of an aromatic alcohol compound in the presence of a dehydration catalyst. The dehydration catalyst is an oxide of a medium rare earth element, wherein the medium rare earth element is samarium, europium, gadolinium, or mixtures thereof.
摘要:
Disclosed herein are polyisocyanurate and/or polyurethane foams containing non-porous silica particles derived from mesoporous cellular foams, wherein the polyisocyanurate and/or polyurethane foams have enhanced heat and/or fire resistance. Processes for making such foams and methods of using them are also disclosed.
摘要:
Provided is a process for preparing a diaryl ether compound through the dehydration of an aromatic alcohol compound in the presence of a dehydration catalyst. The dehydration catalyst comprises a mixture of two or more of (a) an oxide of a light rare earth element, (b) an oxide of a medium rare earth element, (c) an oxide of a heavy rare earth element, or (d) an oxide of yttrium.
摘要:
Provided is a process for preparing a diaryl ether compound through the dehydration of an aromatic alcohol compound in the presence of a dehydration catalyst. The dehydration catalyst is an oxide of a light rare earth element, wherein the light earth element is lanthanum, praseodymium, neodymium, or mixtures thereof.
摘要:
Disclosed herein are polyisocyanurate and/or polyurethane foams containing non-porous silica particles derived from mesoporous cellular foams, wherein the polyisocyanurate and/or polyurethane foams have enhanced heat and/or fire resistance. Processes for making such foams and methods of using them are also disclosed.
摘要:
A process comprising: A) contacting one or more of sources of silicon oxide, selected from water sol-uble.silica sources arid alkali metal silicates, with an aqueous reaction medium, comprising one or more nonionic surfactants and thereby forming mesoporous structures comprising crosslinked silicon oxide units, wherein said cross-linked silicon oxide units have pores of about 1 to about 100 nanometers and wherein the aqueous reaction medium exhibits a pH of about 0 to about 4.0; B) exposing the aqueous reaction medium containing the mesoporous structures to elevated temperatures for a time sufficient to achieve the desired structure and pore size. Preferred water soluble silica sources comprise silicic acid, or po!ysilicic acids, The aqueous reaction, medium is prepared by combining one or more nonionic surfactants and water, theteby forming an aqueous, reaction medium. comprising micelles. Preferably, the aqueous reaction medium further comprises, a. micelle swelling agent capable of swelling micelles formed by the surfactant in the aqueous reaction medium. In one embodiment the process forms structures with struts comprised of crosslinked silicon oxides which connect at least some of the pore forming structures.