Abstract:
A bonded multilayer article including: (a) at least one first layer of a silicone-containing rubber substrate material bonded to (b) at least one second layer of a substrate material bondable to the first layer; wherein at least a portion of the surface of the first layer is activated for adhesion to increase the bond strength of the first layer to a second layer such that the bond strength of the first layer bonded to the second layer is increased; and a process for producing the above bonded multilayer article.
Abstract:
Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a polyether polyol, a chain extender, a polyisocyanate and microspheres. The elastomer is characterized morphologically by the presence of small discrete morphological domains 0.1 to 3 μm in diameter, and the substantial absence of discrete morphological domains 5 to 30 μm in diameter. The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry.
Abstract:
Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a prepolymer made from a polyether polyol and a polyisocyanate, a chain extender, a polyisocyanate and microspheres. The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry.
Abstract:
Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a polymer polyol which has a liquid polyether polyol as a continuous phase and polymer particles dispersed in the liquid polyether polyol, a chain extender, a polyisocyanate and microspheres. The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry.
Abstract:
Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a polymer polyol which has a liquid polyether polyol as a continuous phase and polymer particles dispersed in the liquid polyether polyol, a chain extender, a polyisocyanate and microspheres. The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry.
Abstract:
Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a prepolymer made from a polyether polyol and a polyisocyanate, a chain extender, a polyisocyanate and microspheres. The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry.
Abstract:
Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a polyether polyol having a low amount of terminal unsaturation, a chain extender, a polyisocyanate and microspheres The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry.
Abstract:
Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a polyether polyol having a low amount of terminal unsaturation, a chain extender, a polyisocyanate and microspheres. The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry.
Abstract:
Syntactic polyurethane elastomers are made using a non-mercury catalyst. The elastomer is made from a reaction mixture containing a polyether polyol, a chain extender, a polyisocyanate and microspheres. The elastomer is characterized morphologically by the presence of small discrete morphological domains 0.1 to 3 μm in diameter, and the substantial absence of discrete morphological domains 5 to 30 μm in diameter. The elastomer adheres well to itself, which makes it very useful as thermal insulation for pipelines and other structures that have a complex geometry.