INSULATION FOAM AND METHODS OF MANUFACTURING THE SAME

    公开(公告)号:US20250011560A1

    公开(公告)日:2025-01-09

    申请号:US18761762

    申请日:2024-07-02

    Abstract: A thermal insulation composite is provided. The thermal insulation composite includes a polymer matrix, a thermal conductivity filler, and a physical blowing agent. The polymer matrix includes a thermoset or thermoplastic polymer. The thermal conductivity filler includes a porous-shell hollow-interior glass sphere (PHGS). The physical blowing agent includes an expandable thermoplastic microsphere (EMS). A method of manufacturing the composite is also provided. The method includes the step of combining a polymer matrix, a thermal conductivity filler, and a physical blowing agent to give a pre-heated composition. The method includes heating the pre-heated composition at a softening temperature for a softening time to give a pre-foamed composition. The method also includes heating the pre-foamed composition at a foaming temperature of between 150 to 250° C. for a foaming time of between 3 to 45 minutes to give the composite.

    Syntactic foams as mechanically-triggered capture vehicles

    公开(公告)号:US11828685B2

    公开(公告)日:2023-11-28

    申请号:US17184887

    申请日:2021-02-25

    Abstract: Syntactic foams are materials including hollow microspheres distributed throughout a cured polymeric resin. Hollow microspheres within syntactic foams, including collapsible shells that enclose empty cavities, can serve as receptacles to capture environmental constituents upon applied temperature and pressure. An epoxy formulation including of EPON™ 828, HELOXY™ 61, and TETA was combined with hollow glass microspheres with isostatic crush strengths of 300, 3000, and 10,000 psi. Effects of pressure and temperature on the mechanical properties were evaluated via dynamic mechanical analysis. Storage modulus and glass transition temperature depended on formulation. Upon exposure to specific temperature and pressures, the hollow glass spheres embedded within the resin lose mechanical integrity and collapse, resulting in the generation of unencapsulated void spaces, primed to capture embedded liquid. Controllable loss of mechanical integrity enables syntactic foams to serve as on-demand receptacles to retain constituents in the surrounding environment, resulting from externally triggered pressures and temperatures.

Patent Agency Ranking