Abstract:
The present disclosure encompasses three-dimensional articles comprising flexible composite materials and methods of manufacturing said three-dimensional articles. More particularly, the present system relates to methods for manufacturing seamless three dimensional-shaped articles usable for such finished products as airbags/inflatable structures, bags, shoes, and similar three-dimensional products. A preferred manufacturing process combines composite molding methods with specific precursor materials to form flexible fiber-reinforced continuous shaped articles.
Abstract:
A lightweight laminate comprises: (a) a first outer layer; (b) at least one internal reinforcing layer; (c) optionally, one or more intervening film layers; and (d) a second outer layer, wherein the at least one internal reinforcing layer is disposed between first and second outer layers, and wherein the second outer layer is saturated, partially saturated and coated, or partially coated with a wet-out resin. Reinforcing layers can comprise unitape further comprising parallel monofilaments embedded in resin. An article of manufacture, such as MOLLE, a plate-carrier, or other military, law enforcement, or recreational apparel or gear comprises the light-weight laminate.
Abstract:
A method of transferring a dye to a fiber, braid or composite material comprising applying the dye to a transfer paper to create a dye transfer paper, placing the colored transfer media into contact with the fiber, braid or composite material over an expandable rig or expanding structure such as a metal tube, and applying at least one of heat, pressure, or vacuum to infuse the dye to the fiber, braid or composite material, creating a colored fiber, braid or composite material having minimal to no adverse changes to the physical properties of the fiber, braid or composite material.
Abstract:
The present disclosure encompasses three-dimensional articles comprising flexible composite materials and methods of manufacturing said three-dimensional articles. More particularly, the present system relates to methods for manufacturing seamless three dimensional-shaped articles usable for such finished products as airbags/inflatable structures, bags, shoes, and similar three-dimensional products. A preferred manufacturing process combines composite molding methods with specific precursor materials to form flexible fiber-reinforced continuous shaped articles.
Abstract:
The present disclosure encompasses three-dimensional articles comprising flexible-composite materials and methods of manufacturing said three-dimensional articles. More particularly, the present system relates to methods for manufacturing seamless three-dimensional-shaped articles usable for such finished products as airbags/inflatable structures, bags, shoes, and similar three-dimensional products. A preferred manufacturing process combines composite molding methods with specific precursor materials to form fiber-reinforced continuous shaped articles that are flexible and collapsible.
Abstract:
A lightweight laminate comprises: (a) a first outer layer; (b) at least one internal reinforcing layer; (c) optionally, one or more intervening film layers; and (d) a second outer layer, wherein the at least one internal reinforcing layer is disposed between first and second outer layers, and wherein the second outer layer is saturated, partially saturated and coated, or partially coated with a wet-out resin. Reinforcing layers can comprise unitape further comprising parallel monofilaments embedded in resin. An article of manufacture, such as MOLLE, a plate-carrier, or other military, law enforcement, or recreational apparel or gear comprises the light-weight laminate.
Abstract:
The present disclosure describes multilayer fiber-reinforced electronic composite materials comprising at least one conductive layer and at least one laminate layer further comprising at least one reinforcing layer. In various embodiments, the conductive layer is a continuous metal layer, an etched-metal layer, a metal ground plane, a metal power plane, or an electronic circuitry layer. In various embodiments, the laminate layer comprises an arrangement of unidirectional tape sub-layers to provide fiber-reinforcement and various film layers. The composite materials herein find use as flexible circuit boards, ruggedized flexible electronic displays, and other assemblies requiring flexibility and strength.
Abstract:
Composite anti-ballistic systems comprising multiple nested sub-laminates are disclosed wherein each sub-laminate comprises sub-layers of unidirectional tapes comprising monofilaments made from engineering fibers having anti-ballistic properties embedded in polymer matrix materials. The sub-laminates are nested with interfacial materials such as stiffening polymers or polymer foam engineered for controlled compliance, deformation, energy release, and rate sensitive behavior. Alternating foam and sub-laminate layers are nested to form antiballistic plates that can be flat and/or curved, and can be used alone or incorporated into anti-ballistic devices.