摘要:
The invention includes methods of forming pluralities of electrically conductive structures. The methods can include formation of a gradient-containing material across a substrate and in direct physical contact with conductive surfaces of nodes. The gradient-containing material can consist essentially of tantalum nitride at a lowermost portion in contact with the conductive surfaces, consist essentially of tantalum at an uppermost portion, and have a TaN/Ta gradient extending between the lowermost and uppermost portions. Alternatively, the gradient-containing material can have a Co/W gradient extending therethrough. Conductive structures can be formed over the gradient-containing material. The invention also includes constructions comprising electrically conductive lines over a material having a TaN/Ta gradient, or a W/Co gradient, extending therethrough.
摘要:
The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
摘要:
The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
摘要:
An electrolyte solution, methods, and systems for selectively removing a conductive metal from a substrate are provided. The electrolyte solution comprising nanoparticles that are more noble than the conductive metal being removed, is applied to a substrate to remove the conductive metal selectively relative to a dielectric material without application of an external potential or contact of a processing pad with a surface of the substrate. The solutions and methods can be applied, for example, to remove a conductive metal layer (e.g., barrier metal) selectively relative to a dielectric material and to a materially different conductive metal (e.g., copper interconnect) without application of an external potential or contact of a processing pad with the surface of the substrate.
摘要:
An electrolyte solution, methods, and systems for selectively removing a conductive metal from a substrate are provided. The electrolyte solution comprising nanoparticles that are more noble than the conductive metal being removed, is applied to a substrate to remove the conductive metal selectively relative to a dielectric material without application of an external potential or contact of a processing pad with the surface of the substrate. The solutions and methods can be applied, for example, to remove a conductive metal layer (e.g., barrier metal) selectively relative to dielectric material and to a materially different conductive metal (e.g., copper interconnect) without application of an external potential or contact of a processing pad with the surface of the substrate.
摘要:
The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
摘要:
An electrolyte solution, methods, and systems for selectively removing a conductive metal from a substrate are provided. The electrolyte solution comprising nanoparticles that are more noble than the conductive metal being removed, is applied to a substrate to remove the conductive metal selectively relative to a dielectric material without application of an external potential or contact of a processing pad with the surface of the substrate. The solutions and methods can be applied, for example, to remove a conductive metal layer (e.g., barrier metal) selectively relative to dielectric material and to a materially different conductive metal (e.g., copper interconnect) without application of an external potential or contact of a processing pad with the surface of the substrate.
摘要:
The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
摘要:
The invention includes methods of electrochemically treating semiconductor substrates. The invention includes a method of electroplating a substance. A substrate having defined first and second regions is provided. The first and second regions can be defined by a single mask, and accordingly can be considered to be self-aligned relative to one another. A first electrically conductive material is formed over the first region, and a second electrically conductive material is formed over the second region. The first and second electrically conductive materials are exposed to an electrolytic solution while providing electrical current to the first and second electrically conductive materials. A desired substance is selectively electroplated onto the first electrically conductive material during the exposing of the first and second electrically conductive materials to the electrolytic solution. The invention also includes methods of forming capacitor constructions.
摘要:
An electrolyte solution, methods, and systems for selectively removing a conductive metal from a substrate are provided. The electrolyte solution comprising nanoparticles that are more noble than the conductive metal being removed, is applied to a substrate to remove the conductive metal selectively relative to a dielectric material without application of an external potential or contact of a processing pad with the surface of the substrate. The solutions and methods can be applied, for example, to remove a conductive metal layer (e.g., barrier metal) selectively relative to dielectric material and to a materially different conductive metal (e.g., copper interconnect) without application of an external potential or contact of a processing pad with the surface of the substrate.