摘要:
A method and system for encrypting and verifying the integrity of a message using a three-phase encryption process is provided. A source having a secret master key that is shared with a target receives the message and generates a random number. The source then generates: a first set of intermediate values from the message and the random number; a second set of intermediate values from the first set of values; and a cipher text from the second set of values. At the three phases, the values are generated using the encryption function of a block cipher encryption/decryption algorithm. The random number and the cipher text are transmitted to the target, which decrypts the cipher text by reversing the encryption process. The target verifies the integrity of the message by comparing the received random number with the random number extracted from the decrypted cipher text.
摘要:
The present invention provides for authenticating a message. A security function is performed upon the message. The message is sent to a target. The output of the security function is sent to the target. At least one publicly known constant is sent to the target. The received message is authenticated as a function of at least a shared key, the received publicly known constants, the security function, the received message, and the output of the security function. If the output of the security function received by the target is the same as the output generated as a function of at least the received message, the received publicly known constants, the security function, and the shared key, neither the message nor the constants have been altered.
摘要:
A system for secure communication. A random value generator is configured to generate a random value. A message validation code generator is coupled to the random value generator and configured to generate a message validation code based on a predetermined key, a message, and the random value. A one-time pad generator is coupled to the random number generator and configured to generate a one-time pad based on the random value and the predetermined key. And a masked message generator is coupled to the one-time pad generator and configured to generate a masked message based on the one-time pad and the message. In a particular aspect, a protected message envelope generator is coupled to the random value generator, the message validation code generator, and the masked message generator, and is configured to generate a protected message envelope based on the random value, the message validation code, and the masked message. In another aspect, a protected message envelope reader is configured to receive a protected message envelope and generate a random value, a masked message, and a first message validation code based on the received protected message envelope. A one-time pad generator is coupled to the protected message envelope reader and is configured to generate a one-time pad based on the random value and a predetermined key. A message unmasker is coupled to the one-time pad generator and protected message envelope reader, and is configured to generate an unmasked message based on the one-time pad and the masked message.
摘要:
A System and method for hiding memory latency in a multi-thread environment is presented. Branch Indirect and Set Link (BISL) and/or Branch Indirect and Set Link if External Data (BISLED) instructions are placed in thread code during compilation at instances that correspond to a prolonged instruction. A prolonged instruction is an instruction that instigates latency in a computer system, such as a DMA instruction. When a first thread encounters a BISL or a BISLED instruction, the first thread passes control to a second thread while the first thread's prolonged instruction executes. In turn, the computer system masks the latency of the first thread's prolonged instruction. The system can be optimized based on the memory latency by creating more threads and further dividing a register pool amongst the threads to further hide memory latency in operations that are highly memory bound.
摘要:
The present invention provides for authenticating code and/or data and providing a protected environment for execution. The present invention provides for dynamically partitioning and un-partitioning a local store for the authentication of code or data. The local store is partitioned into an isolated and non-isolated section. Code or data is loaded into the isolated section. The code or data is authenticated in the isolated section of the local store. After authentication, the code is executed. After execution, the memory within the isolated region of the attached processor unit is erased, and the attached processor unit de-partitions the isolated section within the local store.
摘要:
A secure communication methodology is presented. The client device is configured to download application code and/or content data from a server operated by a service provider. Embedded within the client is a client private key, a client serial number, and a copy of a server public key. The client forms a request, which includes the client serial number, encrypts the request with the server public key, and sends the download request to the server. The server decrypts the request with the server's private key and authenticates the client. The received client serial number is used to search for a client public key that corresponds to the embedded client private key. The server encrypts its response, which includes the requested information, with the client public key of the requesting client, and only the private key in the requesting client can be used to decrypt the information downloaded from the server.
摘要:
A system and method are provided to dedicate one or more processors in a multiprocessing system to performing encryption functions. When the system initializes, one of the synergistic processing unit (SPU) processors is configured to run in a secure mode wherein the local memory included with the dedicated SPU is not shared with the other processors. One or more encryption keys are stored in the local memory during initialization. During initialization, the SPUs receive nonvolatile data, such as the encryption keys, from nonvolatile register space. This information is made available to the SPU during initialization before the SPUs local storage might be mapped to a common memory map. In one embodiment, the mapping is performed by another processing unit (PU) that maps the shared SPUs' local storage to a common memory map.
摘要:
A method and apparatus is provided for testing the logic functionality and electrical continuity of a ring oscillator comprising an odd number of inverters connected to form a closed loop. In the method and apparatus, a known value is forced through the ring oscillator, to test the complete circuit path thereof. Thus, a low overhead deterministic test of the functionality of the ring oscillator is provided. In a useful embodiment of the invention, a method is provided for testing functionality and electrical continuity in a ring oscillator, wherein a first test device is inserted between the input of a first inverter and the output of an adjacent second inverter. The first test device is then operated to apply first and second test bits as input test signals to the first inverter input. The embodiment further comprises detecting the response to the applied first and second test bit signals at the output of the second inverter, and using the detected responses in providing an evaluation of functionality of the ring oscillator.
摘要:
An apparatus for controlling rounding modes in a single instruction multiple data (SIMD) floating-point unit is disclosed. The SIMD floating-point unit includes a floating-point status-and-control register (FPSCR) having a first rounding mode bit field and a second rounding mode bit field. The SIMD floating-point unit also includes means for generating a first slice and a second slice. During a floating-point operation, the SIMD floating-point unit concurrently performs a first rounding operation on the first slice and a second rounding operation on the second slice according to a bit in the first rounding mode bit field and a bit in the second rounding mode bit field within the FPSCR, respectively.
摘要:
The present invention provides for controlling the power consumption of an element. A first power control command is issued by software for the element. It is determined if the power control command corresponds to an allowable power control state for that element as defined by the hardware. If the power control command is not an allowable power control state for that element, the hardware sets the power control at a higher level than the power control state issued by the software. The software is real time software, and the software also sets minimally acceptable activity control states. A hierarchy of power consumption is defined for different elements of a chip by software, which provides the minimum level of power consumption by any element or sub-element on a chip.