摘要:
A method and apparatus for processing a semiconductor substrate is disclosed. A plasma reactor has a capacitive electrode driven by a plurality of RF power sources, and the electrode capacitance is matched at the desired plasma density and RF source frequency to the negative capacitance of the plasma, to provide an electrode plasma resonance supportive of a broad process window within which the plasma may be sustained.
摘要:
A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the side wall and the workpiece support being located along a common axis of symmetry. A current source is connected to the first solenoidal electromagnet and furnishes a first electric current in the first solenoidal electromagnet whereby to generate within the chamber a magnetic field which is a function of the first electric current, the first electric current having a value such that the magnetic field increases uniformity of plasma ion density radial distribution about the axis of symmetry near a surface of the workpiece support.
摘要:
A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the side wall and the workpiece support being located along a common axis of symmetry.
摘要:
A plasma reactor includes a vacuum enclosure including a side wall and a ceiling defining a vacuum chamber, and a workpiece support within the chamber and facing the ceiling for supporting a planar workpiece, the workpiece support and the ceiling together defining a processing region between the workpiece support and the ceiling. Process gas inlets furnish a process gas into the chamber. A plasma source power electrode is connected to an RF power generator for capacitively coupling plasma source power into the chamber for maintaining a plasma within the chamber. The reactor further includes at least a first overhead solenoidal electromagnet adjacent the ceiling, the overhead solenoidal electromagnet, the ceiling, the side wall and the workpiece support being located along a common axis of symmetry. A current source is connected to the first solenoidal electromagnet and furnishes a first electric current in the first solenoidal electromagnet whereby to generate within the chamber a magnetic field which is a function of the first electric current, the first electric current having a value such that the magnetic field increases uniformity of plasma ion density radial distribution about the axis of symmetry near a surface of the workpiece support.
摘要:
In a plasma reactor having an electrostatic chuck, wafer voltage is determined from RF measurements at the bias input using previously determined constants based upon transmission line properties of the bias input, and this wafer voltage is used to accurately control the DC wafer clamping voltage.
摘要:
A plasma reactor has a dual frequency plasma RF bias power supply furnishing RF bias power comprising first and second frequency components, f(1), f(2), respectively, and an RF power path having an input end coupled to the plasma RF bias power supply and an output end coupled to the wafer support pedestal, and sensor circuits providing measurement signals representing first and second frequency components of a measured voltage and first and second frequency components of a measured current near the input end of the RF power path. The reactor further includes a processor for providing first and second frequency components of a wafer voltage signal as, respectively, a first sum of the first frequency components of the measured voltage and measured current multiplied by first and second coefficients respectively, and a second sum of the second frequency components of the measured voltage and measured current multiplied by third and fourth coefficients, respectively. A processor produces a D.C. wafer voltage by combining D.C. components of the first and second frequency components of the wafer voltage with an intermodulation correction factor that is the product of the D.C. components of the first and second components of the wafer voltage raised to a selected power and multiplied by a selected coefficient.
摘要:
An overhead gas distribution electrode forming at least a portion of the ceiling of a plasma reactor has a bottom surface facing a processing zone of the reactor. The electrode includes a gas supply manifold for receiving process gas at a supply pressure at a top portion of the electrode and plural pressure-dropping cylindrical orifices extending axially relative to the electrode from the gas supply manifold at one end of each the orifice. A radial gas distribution manifold within the electrode extends radially across the electrode. Plural axially extending high conductance gas flow passages couple the opposite ends of respective ones of the plural pressure-dropping orifices to the radial gas distribution manifold. Plural high conductance cylindrical gas outlet holes are formed in the plasma-facing bottom surface of the electrode and extend axially to the radial gas distribution manifold.