Abstract:
An integrated heat-assisted magnetic recording (HAMR) device comprises a slider that has a top surface, a bottom surface, and a trailing end. A waveguide is carried on the trailing end and a near field transducer is positioned to receive energy from the waveguide and produce plasmons for heating a region of a magnetic medium. A write pole is carried by the slider adjacent to the near field transducer. A laser is mounted on the top surface of the slider and produces a laser beam that passes through a beam shaper mounted on the top surface of the slider that collimates or focuses the laser beam. A mirror is mounted on the slider for directing the collimated or focused light beam into the waveguide.
Abstract:
An integrated heat-assisted magnetic recording (HAMR) device comprises a slider that has a top surface, a bottom surface, and a trailing end. A waveguide is carried on the trailing end and a near field transducer is positioned to receive energy from the waveguide and produce plasmons for heating a region of a magnetic medium. A write pole is carried by the slider adjacent to the near field transducer. A laser is mounted on the top surface of the slider and produces a laser beam that passes through a beam shaper mounted on the top surface of the slider that collimates or focuses the laser beam. A mirror is mounted on the slider for directing the collimated or focused light beam into the waveguide.
Abstract:
A flex circuit for use in a head gimbal assembly having additional polyamide features which improve the damping properties of the flex circuit. An elbow or damping strips with or without metal traces can be added to the flex circuit to dampen the first torsion gain. The elbow or damping strips with or without metal traces do not act as a substrate for electrical circuitry, but rather provide damping properties to the head gimbal assembly.
Abstract:
Passive damping of a disc drive structural member is achieved using a tuned resonance passive damping circuit. This circuit can, for example, be connected to a head gimbal assembly that has a piezoelectric micro-actuator. The circuit can be tuned to the sway frequency of the micro-actuator. The circuit is configured to dissipate mechanical energy as heat, effectively damping the structure to which it is attached.
Abstract:
An apparatus includes a slider mounted on an arm, a first waveguide including a first core guiding layer, a second waveguide mounted on the slider and including a second core guiding layer having a uniform thickness smaller than the thickness of the first core guiding layer, and a coupler for coupling light from the first core guiding layer to the second core guiding layer, wherein the coupler comprises a curved mirror formed in the second waveguide and positioned to reflect light from the first core guiding layer into the second core guiding layer.
Abstract:
An apparatus includes a slider mounted on an arm, a first waveguide including a first core guiding layer, a second waveguide mounted on the slider and including a second core guiding layer having a thickness smaller than the thickness of the first core guiding layer, and a coupler for coupling light from the first core guiding layer to the second core guiding layer.
Abstract:
A method of forming a bond structure for use with integrated circuits and semiconductor electronics and carrier assemblies is disclosed. Metallurgical paste is screen printed through a stencil and the stencil is left in place during the reflow process. The melting point of the bond structure and the metallurgical paste is lower than the melting point of interconnects on the electronic components and less than the decomposition temperature of the carrier assemblies to which the electronic components are bonded.
Abstract:
An apparatus comprising a slider including a slider substrate with a trailing side and a writer with bond pads disposed on the trailing side. The writer has an optic input for receiving an optic output. The apparatus comprises an optoelectronic substrate having a substrate surface facing the trailing side, and having contacts on the substrate surface that are joined to the bond pads by conductive bridges, and having an optoelectronic emitter adjacent the substrate surface for generating the optic output.
Abstract:
An apparatus includes a slider mounted on an arm, a first waveguide including a first core guiding layer, a second waveguide mounted on the slider and including a second core guiding layer having a thickness smaller than the thickness of the first core guiding layer, and a coupler for coupling light from the first core guiding layer to the second core guiding layer.
Abstract:
An apparatus comprising a slider including a slider substrate with a trailing side and a writer with bond pads disposed on the trailing side. The writer has an optic input for receiving an optic output. The apparatus comprises an optoelectronic substrate having a substrate surface facing the trailing side, and having contacts on the substrate surface that are joined to the bond pads by conductive bridges, and having an optoelectronic emitter adjacent the substrate surface for generating the optic output.