摘要:
The invention relates to active impedance matching systems (AIMS) and methods for increasing the efficiency of a wave energy converter (WEC) having a shaft and a shell intended to be placed in a body of water and to move relative to each other in response to forces applied to the WEC by the body of water. The system includes apparatus for: (a) extracting energy from the WEC and producing output electric energy as a function of the movement of the shell (shaft) relative to the shaft (shell): and (b) for selectively imparting energy to one of the shell and shaft for causing an increase in the displacement and velocity (or acceleration) of one of the shell and shaft relative to the other, whereby the net amount of output electrical energy produced is increased. The apparatus for extracting energy and for selectively supplying energy may be implemented using a single device capable of being operated bi-directionally, in terms of both direction and force, or may be implemented by different devices.
摘要:
A wave energy converter (WEC) for converting energy contained in surface waves on a body of water to useful energy comprises two floats movable relative to one another in response to passing surface waves. Both floats comprise expandable outer envelopes which have been expanded into full and firm shape. In one process, expansion is obtained by filling the floats with fluids, for example, air and water. The fluids can be pumped into the floats, or the floats can be mechanically expanded in the presence of the fluids for self filling owing to pressure differentials. In one embodiment, a float envelope can comprise of plurality of end to end connected length sections in nested or telescoped relationship. Expansion is obtained by pulling the telescoped sections out from one and other, for example, by pumping fluids into the telescoped sections.
摘要:
A wave energy converter (WEC) includes a shell suitable for being placed within a body of water. The shell contains an internal oscillator comprising a “reaction mass” and a spring mechanism coupled between the reaction mass and the shell. The shell and internal oscillator are constructed such that, when placed in a body of water and in response to waves in the body of water, there is relative motion between the shell and the internal oscillator's mass. A power take-off (PTO) device is coupled between the internal oscillator and the shell to convert their relative motion into electric energy. In systems embodying the invention, the spring mechanism is designed such that its displacement or movement is less than the displacement or movement of the reaction mass. The spring mechanism may be any device which enables the reaction mass to undergo a given replacement while its displacement or movement is less than that of the reaction mass. This property enables the size of the WEC to be more readily controlled (e.g., made smaller).
摘要:
A wave energy converter (WEC) buoy includes at least one pitch-driven WEC (“PDWEC”) device. Each PDWEC device includes two reaction masses which are placed at diametrically opposite ends of a container designed to float along the surface of a body of water and to move in response to the pitching motion of the waves. The reaction masses are interconnected so that when one reaction mass moves up, the diametrically opposed reaction mass moves down, and vice-versa. The movement of the reaction masses drives power take off (PTO) devices to produce useful energy. The reaction masses may be interconnected by any suitable linking system. One or more PDWEC device may be combined with a heave responsive device to produce a WEC buoy which can produce a power output in response to pitch or heave motion.
摘要:
A defibrillator is provided with two processors for enhancing the defibrillation process. A first processor is dedicated to controlling when an electrical charge is applied to a patient. A second processor is dedicated to data operations for enhancing the coaching of the defibrillation process. The second data processor is in communication with one or more external devices for transmission and receipt of network data for further enhancing the coaching process. The second data processor allows both the defibrillator to be maintained with updated network data and software and the one or more external devices to be maintained with updated defibrillator data. Independent controllers provide multiple processing paths on critical charge and coaching functions; with the second data processor further providing redundancy control in the event of any malfunction of the first charge processor.
摘要:
Apparatus for connecting a power cable to a marine vessel which is subject to pitch, heave, roll and yaw motion includes a ball and socket device for decreasing the twisting and bending of the power cable. The socket is attached to the vessel and the ball can rotate freely Within the socket but its up down motion is restricted. The power cable's outer protective sheath is attached to the ball while its conductors pass through the ball and are connected to an internal connector. A flexible cable (wire) is connected between the internal connector and electrical equipment internal to the marine vessel.
摘要:
A defibrillator is provided with two processors for enhancing the defibrillation process. A first processor is dedicated to controlling when an electrical charge is applied to a patient. A second processor is dedicated to data operations for enhancing the coaching of the defibrillation process. The second data processor is in communication with one or more external devices for transmission and receipt of network data for further enhancing the coaching process. The second data processor allows both the defibrillator to be maintained with updated network data and software and the one or more external devices to be maintained with updated defibrillator data. Independent controllers provide multiple processing paths on critical charge and coaching functions; with the second data processor further providing redundancy control in the event of any malfunction of the first charge processor.
摘要:
A reaction mass and a spring are configured to form an “oscillator”. The reaction mass is coupled to, and can wrap around, a first pulley via a first belt/cable. The spring is coupled to, and can wrap around, a second pulley via a second belt/cable. The first and second pulleys are mechanically linked together and are mounted so they rotate in tandem. The diameter of the second pulley is different than the diameter of the first pulley to cause the reaction mass to travel a different distance than the spring in response to the up down motion of the reaction mass. The first and second pulleys may be circular with the second pulley being made smaller than first. Alternatively, the first pulley may be circular and the second pulley a cam of varying radius.
摘要:
Filler material, particularly for cigarette filters, is produced by feeding a first stream of substantially continuous filaments of filler material onto a pin roller which is driven at a speed such that the filaments are broken by the pins into irregular lengths and are projected from the roller in random orientations. The broken filaments are collected on a carrier stream, also comprising filamentary material, for delivery to a rod-making unit. More than one stream could be supplied to the pin roller so that the broken filaments can comprise a mixture of filaments of different filler materials. The carrier stream may comprise filler material which is different from that in the first stream and may comprise a fibrillated web.
摘要:
A carding flat for use with textile carding machinery comprises an array of individual pins each secured in a respective aperture in a flat support.