摘要:
A vehicle seat occupancy detector 30 provides an output indicative of whether or not the vehicle seat 12 is occupied. The seat occupancy detector 30 includes a Hall effect device 82 which is exposed to a magnetic field provided by a magnet 80.
摘要:
A bracket for attaching and aligning a forward-looking radar (FLR) having a front face is disclosed according to one embodiment. The bracket includes a bracket frame having an attachment feature for attaching the FLR to the bracket frame. The bracket also includes a first mounting feature extending from the bracket frame for coupling the bracket face and the first mounting surface of the conveyance to define a first mounting surface angle. The bracket also includes a bracket member extending from the bracket frame. The bracket member includes an end portion disposed proximate to the bracket face and a distal end portion, which includes a second mounting feature for coupling the bracket member and the second mounting surface thereby defining a second mounting surface angle and aligning the FLR front face to an alignment angle.
摘要:
A control system (10) for a vehicle (16) includes a sensor (228-240) that generates a sensor signal and a stability control system (14). A tire pressure monitoring system (12) generates a tire pressure signal. A brake (262) is coupled to the stability control system (14) and is associated with a rotational object (212) of the vehicle (16). A controller (18, 226) is coupled to the sensor (228-240), has multiple tire pressure associated brake control ranges R1-R3, and detects an unstable event in response to the sensor signal. The controller (18, 226) also applies a brake pressure in response to the tire pressure signal and the tire pressure associated brake control ranges R1-R3 via the stability control system (14).
摘要:
A bracket for attaching and aligning a forward-looking radar (FLR) having a front face is disclosed according to one embodiment. The bracket includes a bracket frame having an attachment feature for attaching the FLR to the bracket frame. The bracket also includes a first mounting feature extending from the bracket frame for coupling the bracket face and the first mounting surface of the conveyance to define a first mounting surface angle. The bracket also includes a bracket member extending from the bracket frame. The bracket member includes an end portion disposed proximate to the bracket face and a distal end portion, which includes a second mounting feature for coupling the bracket member and the second mounting surface thereby defining a second mounting surface angle and aligning the FLR front face to an alignment angle.
摘要:
A roll stability control system (18) for an automotive vehicle (10) includes an external environment sensing system, such as a camera-based vision system, or a radar, lidar or sonar-based sensing system (43) that generates image, radar, lidar, and/or sonar-based signals. A controller (26) is coupled to the sensing system and generates dynamic vehicle characteristic signals in response to the image, radar, lidar, or sonar-based signals. The controller controls the rollover control system (18) in response to the dynamic vehicle control signal. The dynamic vehicle characteristics may include roll related angles, angular rates, and various vehicle velocities.
摘要:
A wireless vehicle communication update system (10) for a vehicle (12) includes a vision sensor (14) that is coupled to a vehicle body (16) of the vehicle (12). The vision sensor (14) wirelessly detects a vehicle information signal from an off-board vehicle setting update device (20) that contains setting information for the vehicle (12). A vehicle controller (18) updates at least one vehicle setting in response to the vehicle information signal.
摘要:
A bracket for attaching and aligning a forward-looking radar (FLR) having a front face is disclosed according to one embodiment. The bracket includes a bracket frame having an attachment feature for attaching the FLR to the bracket frame. The bracket also includes a first mounting feature extending from the bracket frame for coupling the bracket face and the first mounting surface of the conveyance to define a first mounting surface angle. The bracket also includes a bracket member extending from the bracket frame. The bracket member includes an end portion disposed proximate to the bracket face and a distal end portion, which includes a second mounting feature for coupling the bracket member and the second mounting surface thereby defining a second mounting surface angle and aligning the FLR front face to an alignment angle.
摘要:
A bracket for attaching and aligning a forward-looking radar (FLR) having a front face is disclosed according to one embodiment. The bracket includes a bracket frame having an attachment feature for attaching the FLR to the bracket frame. The bracket also includes a first mounting feature extending from the bracket frame for coupling the bracket face and the first mounting surface of the conveyance to define a first mounting surface angle. The bracket also includes a bracket member extending from the bracket frame. The bracket member includes an end portion disposed proximate to the bracket face and a distal end portion, which includes a second mounting feature for coupling the bracket member and the second mounting surface thereby defining a second mounting surface angle and aligning the FLR front face to an alignment angle.
摘要:
A roll stability control system for an automotive vehicle includes an external environment sensing system, such as a camera-based vision system, or a radar, lidar or sonar-based sensing system that generates image, radar, lidar, and/or sonar-based signals. A controller is coupled to the sensing system and generates dynamic vehicle characteristic signals in response to the image, radar, lidar, or sonar-based signals. The controller controls the rollover control system in response to the dynamic vehicle control signal. The dynamic vehicle characteristics may include roll related angles, angular rates, and various vehicle velocities.
摘要:
A turn signal system includes at least one sensor detecting road markers and generating therefrom road marker signals. A turn signal deactivates in response to a control command generated by a controller. The controller receives the road marker signals, and determines at least one of whether the system is undergoing a turning condition or has completed the turning condition from the road marker signals. The controller generates the control command when the system has completed the turning condition. A redundancy system verifies the control command.