摘要:
A novel inspection system for inspecting an article of manufacture, such as a printed circuit board, is disclosed, where the system includes a strobed illuminator adapted to project light through a reticle so as to project a pattern of light onto an area of the printed circuit board. A board transport responsively positions the board to at least two distinct positions, where each position corresponding to a different phase of the projected light. Also included is a detector adapted to acquire at least two images of the area, each image corresponding to one of the at least two different phases. An encoder monitors the movement of the board and outputs a position output, and a processor connected to the encoder, the board transport, the illuminator and the detector controlledly energizes the illuminator to expose the area as a function of the position output, the processor co-siting the at least two images and constructing a height map image with the co-sited images.
摘要:
An optical system for computing a height of a target on a surface includes a light projector for projecting light. The light passes through a patterned reticle and a projector lens so as to illuminate the target with an image of the pattern. The light is projected telecentrically between the reticle and the projector lens, and a camera is positioned along a receive optical path. The camera receives an image of the target through a receive lens. The target and the pattern move at least three times with respect to each other, and the camera acquires an image of the object at each of at least three positions.
摘要:
An optical inspection system and method are provided. A workpiece transport moves a workpiece in a nonstop manner. An illuminator includes a light pipe and is configured to provide a first and second strobed illumination field types. First and second arrays of cameras are arranged to provide stereoscopic imaging of the workpiece. The first array of cameras is configured to generate a first plurality of images of the workpiece with the first illumination field and a second plurality of images of the feature with the second illumination field. The second array of cameras is configured to generate a third plurality of images of the workpiece with the first illumination field and a fourth plurality of images of the feature with the second illumination field. A processing device stores at least some of the first, second, third, and fourth pluralities of images and provides the images to an other device.
摘要:
An optical inspection system includes a printed circuit board (PCB) transport and an illuminator that provides at least a first strobed illumination field. The illuminator includes a light pipe having a first end proximate the PCB, and a second end opposite the first end and spaced from the first end. An array of cameras is configured to digitally image the PCB and to generate a plurality of images of the PCB with the at least first strobed illumination field type. At least one structured light projector is disposed to project structured illumination on the PCB. The at least one array of cameras is configured to digitally image the PCB while the PCB is illuminated with structured light, to provide a plurality of structured light images. A processing device is configured to generate an inspection result as a function of the plurality of images and the plurality of structured light images.
摘要:
An electronics assembly line includes a first electronics assembly machine and a second electronics assembly machine. The first electronics assembly machine has a first electronics assembly machine outlet. The second electronics assembly machine has a second electronics assembly machine inlet and outlet. The inlet of the second electronics assembly machine is coupled to the outlet of the first electronics assembly machine by a conveyor. A first optical inspection sensor is disposed over the conveyor before the inlet of the second electronics assembly and is configured to provide first sensor inspection image data relative to a substrate that passes beneath the first optical inspection sensor in a non-stop fashion. A second optical inspection sensor is disposed over the conveyor after the outlet of the second electronics assembly machine and is configured to provide second sensor inspection image data relative to a substrate that passes beneath the second optical inspection sensor in a non-stop fashion. A computer is operably coupled to the first and second optical inspection sensors and is configured to provide an inspection result based upon at least one of the first and second inspection image data.
摘要:
An optical inspection system for inspecting a substrate is provided. The system includes an array of cameras configured to acquire a plurality of sets of images as the substrate and the array undergo relative motion with respect to each other. At least one focus actuator is operably coupled to each camera of the array of cameras to cause displacement of at least a portion of each camera that affects focus. A substrate range calculator is configured to receive at least portions of images from the array and to calculate range between the array of cameras and the substrate. A controller is coupled to the array of cameras and to the range calculator. The controller is configured to provide a control signal to each of the at least one focus actuator to adaptively focus each camera of the array during the relative motion.
摘要:
An electronics assembly line includes a first electronics assembly machine and a second electronics assembly machine. The first electronics assembly machine has a first electronics assembly machine outlet. The second electronics assembly machine has a second electronics assembly machine inlet and outlet. The inlet of the second electronics assembly machine is coupled to the outlet of the first electronics assembly machine by a conveyor. A first optical inspection sensor is disposed over the conveyor before the inlet of the second electronics assembly and is configured to provide first sensor inspection image data relative to a substrate that passes beneath the first optical inspection sensor in a non-stop fashion. A second optical inspection sensor is disposed over the conveyor after the outlet of the second electronics assembly machine and is configured to provide second sensor inspection image data relative to a substrate that passes beneath the second optical inspection sensor in a non-stop fashion. A computer is operably coupled to the first and second optical inspection sensors and is configured to provide an inspection result based upon at least one of the first and second inspection image data.
摘要:
An optical inspection sensor is provided. The sensor includes an array of cameras configured to acquire image data relative to a workpiece that moves relative to the array of cameras in a non-stop fashion. An illumination system is disposed to provide a pulse of illumination when the array of cameras acquires the image data. At least some image data includes data regarding a skip mark or barcode on the workpiece.
摘要:
An optical inspection system and method are provided. A workpiece transport moves a workpiece in a nonstop manner. An illuminator includes a light pipe and is configured to provide a first and second strobed illumination field types. First and second arrays of cameras are arranged to provide stereoscopic imaging of the workpiece. The first array of cameras is configured to generate a first plurality of images of the workpiece with the first illumination field and a second plurality of images of the feature with the second illumination field. The second array of cameras is configured to generate a third plurality of images of the workpiece with the first illumination field and a fourth plurality of images of the feature with the second illumination field. A processing device stores at least some of the first, second, third, and fourth pluralities of images and provides the images to an other device.
摘要:
An optical inspection system for inspecting a substrate is provided. The system includes an array of cameras configured to acquire a plurality of sets of images as the substrate and the array undergo relative motion with respect to each other. At least one focus actuator is operably coupled to each camera of the array of cameras to cause displacement of at least a portion of each camera that affects focus. A substrate range calculator is configured to receive at least portions of images from the array and to calculate range between the array of cameras and the substrate. A controller is coupled to the array of cameras and to the range calculator. The controller is configured to provide a control signal to each of the at least one focus actuator to adaptively focus each camera of the array during the relative motion.