摘要:
An add/drop multiplexer/demultiplexer (ADM) for switching, modulating and attenuating optical signals in a fiber optic network employing wavelength division multiplexing (WDM) is disclosed. The ADM is equipped an optical multiplexer for splitting an input WDM signal into individual optical signals, leading to respective 2.times.2 switches. Each switch has another input originating from a plurality of "add lines", and selects one of its inputs to be dropped and the other to continue along a main signal path. The retained signals may be modulated and attenuated prior to being tapped and finally multiplexed together by a WDM multiplexer. The tapped signals are optoelectronically converted and fed back to a controller, preferably a digital signal processor running a software algorithm, which controls the switching, modulation and attenuation. This permits remote control of the ADM functions by encoding instructions for the controller into a low-frequency dither signal that is embedded within the individual optical signals. The ADM can accordingly be instructed to reroute traffic, dynamically equalize or otherwise change optical channel power levels, and add or remove dither, all in real time. A specific optical channel may be reserved for control purposes, allowing a network administrator to "log in" to the ADM to override the controller software algorithm. Optionally, the optical signals can be tapped upon entry to the ADM. A bidirectional ADM can be constructed from two unidirectional ADMs, and may share the same controller. Also, a single, general multi-input multi-output switch can be used to provide an arbitrary mapping between individual input and output optical signals.
摘要:
An add/drop multiplexer/demultiplexer (ADM) for switching, modulating and attenuating optical signals in a fiber optic network employing wavelength division multiplexing (WDM) is disclosed. The ADM is equipped an optical multiplexer for splitting an input WDM signal into individual optical signals, leading to respective 2.times.2 switches. Each switch has another input originating from a plurality of "add lines", and selects one of its inputs to be dropped and the other to continue along a main signal path. The retained signals may be modulated and attenuated prior to being tapped and finally multiplexed together by a WDM multiplexer. The tapped signals are optoelectronically converted and fed back to a controller, preferably a digital signal processor running a software algorithm, which controls the switching, modulation and attenuation. This permits remote control of the ADM functions by encoding instructions for the controller into a low-frequency dither signal that is embedded within the individual optical signals. The ADM can accordingly be instructed to reroute traffic, dynamically equalize or otherwise change optical channel power levels, and add or remove dither, all in real time. A specific optical channel may be reserved for control purposes, allowing a network administrator to "log in" to the ADM to override the controller software algorithm. Optionally, the optical signals can be tapped upon entry to the ADM. A bidirectional ADM can be constructed from two unidirectional ADMs, and may share the same controller. Also, a single, general multi-input multi-output switch can be used to provide an arbitrary mapping between individual input and output optical signals.
摘要:
A method for encoding a binary input sequence x(0,1) to obtain a duobinary output sequence y(+1,0,-1) is provided. The duobinary coding technique always provides an output bit y.sub.k =0 when the corresponding bit x.sub.k =0; bits y.sub.k alternatively assume a logical level "+1" and "-1" whenever an input bit x.sub.k-1 =0 changes to x.sub.k =1, and the output bit y.sub.k maintains the logical level "+1" or "-1" whenever the corresponding bit x.sub.k maintains the logical level "1". A coding device for encoding a binary input sequence x(0,1) to a duobinary output sequence y(+1,0,-1) is also provided, comprising a D-type flip-flop for generating a binary switch signal. A first AND circuit receives the input sequence and the switch signal, and provides a first binary sequence a(0,1), while a second AND circuit receives the input sequence and the complement of the switch signal and provides a second binary sequence b(0,1). These first and second binary sequences are applied to a summer to obtain the output sequence y(+1,0,-1). A method for differentially driving a M-Z modulator using a virtual ground level is also provided, which reduces the peak-to-peak drive voltage by a factor of two.
摘要:
A sub-harmonic clock signal is provided in a series of soliton optical pulses that are transmitted at a given line rate in a soliton optical transmission system. The line rate defines time slots of equal duration. Each soliton optical pulse in every N time slots is modulated in a manner to make the pulse distinguishable from pulses in other time slots. The frequency of the sub-harmonic clock signal is equal to the line rate divided by N. This technique of providing a clock signal allows simple recovery of the clock signal using a PIN diode photo detector and a bandpass filter of appropriate bandwidth.
摘要:
Optical dispersion imposed on a communications signal conveyed through an optical communications system is compensated by modulating the communications signal in the electrical domain. A compensation function is determined that substantially mitigates the chromatic dispersion. The communications signal is then modulated in the electrical domain using the compensation function. In preferred embodiments, compensation is implemented in the transmitter, using a look-up-table and digital-to-analog converter to generate an electrical predistorted signal. The electrical predistorted signal is then used to modulate an optical source to generate a corresponding predistorted optical signal for transmission through the optical communications system.
摘要:
The present invention provides a method and apparatus for monitoring optical signals with an expand frequency resolution. The invention permits high-resolution measurements of optical signal spectrums while retaining wide bandwidth operation through appropriate control circuitry. An interferometer having a periodic frequency response formed of equally spaced narrow-band peaks is used to sweep the entire signal spectrum. The interferometer frequency response is incrementally tuned in cycles so that each of its frequency response peaks cyclically scans a particular spectral band of the signal spectrum. During each cycle, the interferometer isolates multiple,spectrally resolved portions of the optical signal spectrum where each portion originates frog different spectral band. In this way, a high-resolution measurement of the entire signal spectrum can be obtained. The invention may be network protocol independent and can be incorporated into an optical spectrum analyzer or directly into any optical terminal. The invention can be used for signal spectrum monitoring applications including link quality monitoring (LQM) in optical communications networks to monitor various transmission parameters such as such as carrier wavelengths, optical signal-to-noise ratios (SNR), amplified spontaneous emissions (ASE), noise levels, optical non-linearities or other signal baseband information such as data rates and formats.
摘要:
A method and system for reducing non-linear signal degradation effects of WDM optical signals exacerbated by highly correlated bit patterns of optical waveforms in neighboring optical channels. Embodiments include offsetting the transmission times of signals in neighboring channels, and applying different scrambling patterns to the respective data streams prior to transmission on neighboring optical channels.
摘要:
The present invention provides a method and apparatus for monitoring optical signals with an expanded frequency resolution. The invention permits high-resolution measurements of optical signal spectrums while retaining wide bandwidth operation through appropriate control circuitry. An interferometer having a periodic frequency response formed of equally spaced narrow-band peaks is used to sweep the entire signal spectrum. The interferometer frequency response is incrementally tuned in cycles so that each of its frequency response peaks cyclically scans a particular spectral band of the signal spectrum. During each cycle, the interferometer isolates multiple spectrally resolved portions of the optical signal spectrum where each portion originates from a different spectral band. In this way, a high-resolution measurement of the entire signal spectrum can be obtained. The invention may be network protocol independent and can be incorporated into an optical spectrum analyzer or directly into any optical terminal. The invention can be used for signal spectrum monitoring applications including link quality monitoring (LQM) in optical communications networks to monitor various transmission parameters such as such as carrier wavelengths, optical signal-to-noise ratios (SNR), amplified spontaneous emissions (ASE), noise levels, optical non-linearities or other signal baseband information such as data rates and formats.
摘要:
A compact source capable of generating continuously tunable high frequency microwave radiation and short optical pulses in the picosecond/sub-picosecond range is invented. It includes a laser structure having two lasers formed on the same substrate which simultaneously operate at different longitudinal modes. Each laser has a complex coupled (gain-coupled or loss-coupled) grating which is formed by deep etching through a multi-quantum well structure, either of the active medium or of the additional lossy quantum-well layers, thus ensuring no substantial interaction between lasers. The lasers have a common active medium and shared optical path and provide mutual light injection into each other which results in generation of a beat signal at a difference frequency of two lasers. The beat frequency is defined by spacing between the laser modes and may be continuously tuned by current injection and/or temperature variation. Thus, the beat signal provides a continuously tunable microwave radiation. To form a train of short optical pulses, the beat signal is either further sent to a saturable absorber followed by a semiconductor optical amplifier, or sent directly into an optical compressor which includes a dispersion fiber. As a result, a duration of each impulse is compressed, and a train of short optical pulses is formed.
摘要:
A binary signal is encoded to produce a three-level encoded signal having reduced bandwidth and small low frequency and d.c. components, e.g. using modified duobinary encoding, the encoded signal directly modulating a semiconductor laser to produce a frequency modulated optical signal, which is passed through an interference filter to provide two-state amplitude modulation from the three-state frequency modulation for direct recovery of the binary signal by an optical receiver, the interference filter providing constructive and destructive interference for frequencies corresponding to binary one and zero bits respectively. An array transmission system can be provided by combining multiple such frequency modulated optical signals, from multiple lasers with respective central frequencies and respective encoders for multiple binary signals, using an array waveguide which also serves as a channel frequency filter, with a single interference filter. Polarization modulation instead of frequency modulation, and external modulation of an optical signal from an optical source, are also described.