摘要:
Systems and methods for locating and defining a target location within a human body. The system can include at least one marker, a probe, and a detector for use in locating the markers by providing information to a surgeon that is representative of changes in proximity between the probe and the marker. The marker can have various detection characteristics, e.g., gamma radiation, that are detectable by an associated probe and detector. The tissue volume is removed by manipulating a cutting tool based on the proximity information provided by the detector, which can be used by the surgeon to define the boundary of the tissue volume. The systems and methods of the invention are particularly useful in locating and then removing a tissue volume or other target location from amorphous, pliable tissue (e.g., breast tissue) or other body parts.
摘要:
A facility for facilitating custom radiation treatment planning is described. During a distinguished radiation treatment session for a patient, the facility collects data indicating positioning of a predefined treatment site of the patient relative to a target treatment location throughout the distinguished radiation treatment session. The facility associates the collected positioning data with data describing one or more other aspects of the distinguished radiation treatment session. The facility provides the associated data to a treatment planning facility to determine a treatment plan for future radiation treatment sessions for the patient.
摘要:
An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.
摘要:
An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.
摘要:
An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.
摘要:
An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy.
摘要:
A facility for facilitating custom radiation treatment planning is described. During a distinguished radiation treatment session for a patient, the facility collects data indicating positioning of a predefined treatment site of the patient relative to a target treatment location throughout the distinguished radiation treatment session. The facility associates the collected positioning data with data describing one or more other aspects of the distinguished radiation treatment session. The facility provides the associated data to a treatment planning facility to determine a treatment plan for future radiation treatment sessions for the patient.
摘要:
Systems and methods for treating a lung of a patient. One embodiment of a method comprises positioning a leadless marker in the lung of the patient relative to the target, and collecting position data of the marker. This method further comprises determining the location of the marker in an external reference frame outside of the patient based on the collected position data, and providing an objective output in the external reference frame that is responsive to movement of the marker. The objective output is provided at a frequency (i.e., periodicity) that results in a clinically acceptable tracking error. In addition, the objective output can also be provided at least substantially contemporaneously with collecting the position data used to determine the location of the marker.
摘要:
Electromagnetic transponders as markers are used to localize and guide orthopedic procedures including: knee replacement, hip replacement, shoulder replacement, damaged bone reconstruction, and spine surgery, and more particularly, to guide orthopedic surgical navigation and alignment techniques and instruments. For example, the marker could further be used in any number of guides or templates that attach to the bony anatomy, such as a surgical guide, cutting guide, cutting jig, resection block and/or resurfacing guide. Further, the marker could be incorporated into an existing intramedullary guide rod for a femur and an extramedullary guide rod for a tibia in a knee replacement surgery; or into an external surgical guide system, or the marker could eliminate the need for an external template altogether. According to yet another anticipated use of the tracking system, the marker could be used in conjunction with or replace an optical alignment system.
摘要:
An integrated radiation therapy process comprises acquiring first objective target data related to a parameter of a target within a patient by periodically locating a marker positioned within the patient using a localization modality. This method continues with obtaining second objective target data related to the parameter of the target by periodically locating the marker. The first objective target data can be acquired in a first area that is apart from a second area which contains a radiation delivery device for producing an ionizing radiation beam for treating the patient. The localization modality can be the same in both the first and second areas. In other embodiments, the first objective target data can be acquired using a first localization modality that uses a first energy type to identify the marker and the second objective target data can be obtained using a second localization modality that uses a second energy type to identify the marker that is different than the first energy type.