摘要:
Devices and approaches for activating cross-linking within at least one eye component of an eye to stabilize and strengthen corneal tissue or other tissues of the eye. Cross-linking is activated within the at least one eye component by conveying a cross-linking agent to regions of the at least one eye component and then activating the cross-linking agent by delivering an initiating element to the at least one eye component. Approaches disclosed herein allow for precisely controlling the three dimensional region of strengthened tissue by conveying the cross-linking agent to regions of the at least one eye component. Approaches allow for conveying the cross-linking agent to a depth below the corneal surface such that cross-linking is activated below the corneal surface.
摘要:
Devices and approaches for activating cross-linking within at least one eye component of an eye to stabilize and strengthen corneal tissue or other tissues of the eye. Cross-linking is activated within the at least one eye component by conveying a cross-linking agent to regions of the at least one eye component and then activating the cross-linking agent by delivering an initiating element to the at least one eye component. Approaches disclosed herein allow for precisely controlling the three dimensional region of strengthened tissue by conveying the cross-linking agent to regions of the at least one eye component. Approaches allow for conveying the cross-linking agent to a depth below the corneal surface such that cross-linking is activated below the corneal surface.
摘要:
Devices and approaches for activating cross-linking within corneal tissue to stabilize and strengthen the corneal tissue following an eye therapy treatment. A feedback system is provided to acquire measurements and pass feedback information to a controller. The feedback system may include an interferometer system, a corneal polarimetry system, or other configurations for monitoring cross-linking activity within the cornea. The controller is adapted to analyze the feedback information and adjust treatment to the eye based on the information. Aspects of the feedback system may also be used to monitor and diagnose features of the eye 1. Methods of activating cross-linking according to information provided by a feedback system in order to improve accuracy and safety of a cross-linking therapy are also provided.
摘要:
Devices and approaches for activating cross-linking within corneal tissue to stabilize and strengthen the corneal tissue following an eye therapy treatment. A feedback system is provided to acquire measurements and pass feedback information to a controller. The feedback system may include an interferometer system, a corneal polarimetry system, or other configurations for monitoring cross-linking activity within the cornea. The controller is adapted to analyze the feedback information and adjust treatment to the eye based on the information. Aspects of the feedback system may also be used to monitor and diagnose features of the eye. Methods of activating cross-linking according to information provided by a feedback system in order to improve accuracy and safety of a cross-linking therapy are also provided.
摘要:
Devices and approaches for monitoring time based photo active agent delivery or photo active marker presence in an eye. A monitoring system is provided for measuring the presence of a photo active marker by illuminating the eye so as to excite the photo-active marker and then observing characteristic emission from the photo active marker. Example systems incorporate Scheimpflug optical systems or slit lamp optical systems to observe cross sectional images of an eye to monitor instantaneous distribution, diffusion pattern, and rate of uptake of a photo active agent applied to an eye. Systems and methods further allow for utilizing the monitored distribution of photo active agent in the eye as feedback for a cross-linking system.
摘要:
Devices and approaches for monitoring time based photo active agent delivery or photo active marker presence in an eye. A monitoring system is provided for measuring the presence of a photo active marker by illuminating the eye so as to excite the photo-active marker and then observing characteristic emission from the photo active marker. Example systems incorporate Scheimpflug optical systems or slit lamp optical systems to observe cross sectional images of an eye to monitor instantaneous distribution, diffusion pattern, and rate of uptake of a photo active agent applied to an eye. Systems and methods further allow for utilizing the monitored distribution of photo active agent in the eye as feedback for a cross-linking system.
摘要:
Systems and methods stabilize corneal tissue after treatment of the corneal tissue. For example, thermokeratoplasty may be applied to the corneal tissue to address disorders associated with abnormal shaping of the cornea. To stabilize the desired structural changes caused by the treatment, embodiments apply ophthalmic formulations that help to inhibit wound healing. Wound healing may occur in response to the application of the treatment and may produce further structural changes that mitigate or alter the desired effects of the treatment.
摘要:
A multimodal biometric identification system captures and processes images of both the iris and the retina for biometric identification. Another multimodal ocular system captures and processes images of the iris and/or the from both eyes of a subject. Biometrics based on data provided by these systems are more accurate and robust than using biometrics that include data from only the iris or only the retina from a single eye. An exemplary embodiment emits photons to the iris and the retina of both eyes, an iris image sensor that captures an image of the iris when the iris reflects the emitted light, a retina image sensor that captures an image of the retina when the retina reflects the emitted light, and a controller that controls the iris and the retina illumination sources, where the captured image of the iris and the captured image of the retina contain biometric data.
摘要:
In a system for stabilizing a pattern of structural changes in corneal fibrils, an eye treatment system causes corneal fibrils of a cornea of an eye to transition from a first structure to a second structure. An application device applies a cross-linking element to the corneal fibrils. An activating device applies an initiating element to the corneal fibrils and activates the cross-linking element. The cross-linking element causes cross-linking in the corneal fibrils to preserve the second structure of the corneal fibrils. Another application device may apply a cross-linking breaker to the corneal fibrils. The cross-linking breaker halts or reverses at least partially the cross-linking in the corneal fibrils. Another activating device applies an initiating element to the corneal fibrils and activates the cross-linking breaker. Advantageously, the cross-linking breaker provides greater control over the amount and progress of cross-linking that occurs in the corneal fibrils.
摘要:
Embodiments apply a cross-linking agent to a region of corneal tissue. The cross-linking agent improves the ability of the corneal tissue to resist undesired structural changes. For example, the cross-linking agent may be Riboflavin or Rose Bengal, and the initiating element may be photoactivating light, such as ultraviolet (UV) light. In these embodiments, the photoactivating light initiates cross-linking activity by irradiating the applied cross-linking agent to release reactive oxygen radicals in the corneal tissue. The cross-linking agent acts as a sensitizer to convert O2 into singlet oxygen which causes cross-linking within the corneal tissue. The rate of cross-linking in the cornea is related to the concentration of O2 present when the cross-linking agent is irradiated with photoactivating light. Accordingly, the embodiments control the concentration of O2 during irradiation to increase or decrease the rate of cross-linking and achieve a desired amount of cross-linking.