摘要:
A bio-mimetic or bio-implantable material based on a sequential process of coupling biomolecule layers to a polymer layer is provided. In general, the material could be based on two or more biomolecule layers starting with one of the layers covalently linked to the polymer layer via cross-linkers and the other layers sequentially and covalently linked using cross-linkers to the previously added layer. The polymer layer could be a hydrogel or an interpenetrating polymer network hydrogel. The first layer of biomolecules could be a collagen type, fibronectin, laminin, extracellular matrix protein, or any combinations thereof. The second layer of biomolecules typically is a growth factor, protein or stimulant. The cross-linkers are either water soluble or insoluble bifunctional cross-linkers or azide-active-ester crosslinkers. The material and process as taught in this invention are useful in the field of tissue engineering and wound healing.
摘要:
A material that can be applied as implants designed to artificially replace or augment the cornea, such as an artificial cornea, corneal onlay, or corneal inlay (intrastromal lens) is provided. The artificial corneal implant has a double network hydrogel with a first network interpenetrated with a second network. The first network and the second network are based on biocompatible polymers. At least one of the network polymers is based on a hydrophilic polymer. The artificial cornea or implant has epithelialization promoting biomolecules that are covalently linked to the surface of the double network hydrogel using an azide-active-ester chemical linker. Corneal epithelial cells or cornea-derived cells are adhered to the biomolecules. The double network has a physiologic diffusion coefficient to allow passage of nutrients to the adhered cells.
摘要:
The present invention provides interpenetrating polymer network hydrogels that have high oxygen permeability, strength, water content, and resistance to protein adsorption. The hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. The telechelic macromonomer preferably has a molecular weight of between about 575 Da and about 20,000 Da. Mixtures of molecular weights may also be used. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylamide and the hydrophilic monomer is an acrylic-based monomer. The material is designed to serve as a contact lens.
摘要:
The present invention provides materials that have high glucose and oxygen permeability, strength, water content, and resistance to protein adsorption. The materials include an interpenetrating polymer network (IPN) hydrogel that is coated with biomolecules. The IPN hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylamide, PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. Any biomolecules may be linked to the IPN hydrogels, but are preferably biomolecules that support the growth of cornea-derived cells. The material is designed to serve as a corneal prosthesis.
摘要:
The present invention provides materials that have high glucose and oxygen permeability, strength, water content, and resistance to protein adsorption. The materials include an interpenetrating polymer network (IPN) hydrogel that is coated with biomolecules. The IPN hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. Any biomolecules may be linked to the IPN hydrogels, but are preferably biomolecules that support the growth of cornea-derived cells. The material is designed to serve as a corneal prosthesis.
摘要:
A material that can be applied as implants designed to artificially replace or augment the cornea, such as an artificial cornea, corneal onlay, or corneal inlay (intrastromal lens) is provided. The artificial corneal implant has a double network hydrogel with a first network interpenetrated with a second network. The first network and the second network are based on biocompatible polymers. At least one of the network polymers is based on a hydrophilic polymer. The artificial cornea or implant has epithelialization promoting biomolecules that are covalently linked to the surface of the double network hydrogel using an azide-active-ester chemical linker. Corneal epithelial cells or cornea-derived cells are adhered to the biomolecules. The double network has a physiologic diffusion coefficient to allow passage of nutrients to the adhered cells.
摘要:
Ophthalmic devices are provided based on an interpenetrating (IPN) double network hydrogel of a first network physically entangled with a second network. The first network is an entangled network of self-linked hydrophilic telechelic macromonomers and hydrophobic moieties. The second network is a hydrophilic network of crosslinked polyacrylic acid. The IPN double network hydrogels including the hydrophobic moieties are characterized by being optically clear and having refractive indices above 1.34.
摘要:
The present invention provides materials that have high glucose and oxygen permeability, strength, water content, and resistance to protein adsorption. The materials include an interpenetrating polymer network (IPN) hydrogel that is coated with biomolecules. The IPN hydrogels include two interpenetrating polymer networks. The first polymer network is based on a hydrophilic telechelic macromonomer. The second polymer network is based on a hydrophilic monomer. The hydrophilic monomer is polymerized and cross-linked to form the second polymer network in the presence of the first polymer network. In a preferred embodiment, the hydrophilic telechelic macromonomer is PEG-diacrylate or PEG-dimethacrylate and the hydrophilic monomer is an acrylic-based monomer. Any biomolecules may be linked to the IPN hydrogels, but are preferably biomolecules that support the growth of cornea-derived cells. The material is designed to serve as a corneal prosthesis.
摘要:
A material that can be applied as implants designed to artificially replace or augment the cornea, such as an artificial cornea, corneal onlay, or corneal inlay (intrastromal lens) is provided. The artificial corneal implant has a double network hydrogel with a first network interpenetrated with a second network. The first network and the second network are based on biocompatible polymers. At least one of the network polymers is based on a hydrophilic polymer. The artificial cornea or implant has epithelialization promoting biomolecules that are covalently linked to the surface of the double network hydrogel using an azide-active-ester chemical linker. Corneal epithelial cells or cornea-derived cells are adhered to the biomolecules. The double network has a physiologic diffusion coefficient to allow passage of nutrients to the adhered cells.
摘要:
The present invention provides a hydrogel-based intraocular lens (IOL) implant that can covalently attach to a lens capsule on implantation into an eye. The inventive IOL has a high refractive index, high elasticity, and is of a similar size to a naturally occurring lens. In addition, the IOL can be implanted in a smaller, dehydrated state, allowing the IOL to be placed in the lens capsule with a small incision (up to about 1/10 the volume of the IOL). Exposure to fluid can then initiate rapid swelling of the dried polymer to the shape and dimensions of a natural lens, with full occupation of the lens capsule. Upon equilibrium swelling, the IOL can then make contact with the inner aspect of the lens capsule and covalently bind to it. By this attachment process, the IOL may accommodate in a manner identical to that of the natural lens.